Annotation of rpl/lapack/lapack/dpbrfs.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
                      2:      $                   LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          UPLO
                     13:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IWORK( * )
                     17:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     18:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  DPBRFS improves the computed solution to a system of linear
                     25: *  equations when the coefficient matrix is symmetric positive definite
                     26: *  and banded, and provides error bounds and backward error estimates
                     27: *  for the solution.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  UPLO    (input) CHARACTER*1
                     33: *          = 'U':  Upper triangle of A is stored;
                     34: *          = 'L':  Lower triangle of A is stored.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The order of the matrix A.  N >= 0.
                     38: *
                     39: *  KD      (input) INTEGER
                     40: *          The number of superdiagonals of the matrix A if UPLO = 'U',
                     41: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     42: *
                     43: *  NRHS    (input) INTEGER
                     44: *          The number of right hand sides, i.e., the number of columns
                     45: *          of the matrices B and X.  NRHS >= 0.
                     46: *
                     47: *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
                     48: *          The upper or lower triangle of the symmetric band matrix A,
                     49: *          stored in the first KD+1 rows of the array.  The j-th column
                     50: *          of A is stored in the j-th column of the array AB as follows:
                     51: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     52: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     53: *
                     54: *  LDAB    (input) INTEGER
                     55: *          The leading dimension of the array AB.  LDAB >= KD+1.
                     56: *
                     57: *  AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N)
                     58: *          The triangular factor U or L from the Cholesky factorization
                     59: *          A = U**T*U or A = L*L**T of the band matrix A as computed by
                     60: *          DPBTRF, in the same storage format as A (see AB).
                     61: *
                     62: *  LDAFB   (input) INTEGER
                     63: *          The leading dimension of the array AFB.  LDAFB >= KD+1.
                     64: *
                     65: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     66: *          The right hand side matrix B.
                     67: *
                     68: *  LDB     (input) INTEGER
                     69: *          The leading dimension of the array B.  LDB >= max(1,N).
                     70: *
                     71: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
                     72: *          On entry, the solution matrix X, as computed by DPBTRS.
                     73: *          On exit, the improved solution matrix X.
                     74: *
                     75: *  LDX     (input) INTEGER
                     76: *          The leading dimension of the array X.  LDX >= max(1,N).
                     77: *
                     78: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     79: *          The estimated forward error bound for each solution vector
                     80: *          X(j) (the j-th column of the solution matrix X).
                     81: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                     82: *          is an estimated upper bound for the magnitude of the largest
                     83: *          element in (X(j) - XTRUE) divided by the magnitude of the
                     84: *          largest element in X(j).  The estimate is as reliable as
                     85: *          the estimate for RCOND, and is almost always a slight
                     86: *          overestimate of the true error.
                     87: *
                     88: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     89: *          The componentwise relative backward error of each solution
                     90: *          vector X(j) (i.e., the smallest relative change in
                     91: *          any element of A or B that makes X(j) an exact solution).
                     92: *
                     93: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
                     94: *
                     95: *  IWORK   (workspace) INTEGER array, dimension (N)
                     96: *
                     97: *  INFO    (output) INTEGER
                     98: *          = 0:  successful exit
                     99: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    100: *
                    101: *  Internal Parameters
                    102: *  ===================
                    103: *
                    104: *  ITMAX is the maximum number of steps of iterative refinement.
                    105: *
                    106: *  =====================================================================
                    107: *
                    108: *     .. Parameters ..
                    109:       INTEGER            ITMAX
                    110:       PARAMETER          ( ITMAX = 5 )
                    111:       DOUBLE PRECISION   ZERO
                    112:       PARAMETER          ( ZERO = 0.0D+0 )
                    113:       DOUBLE PRECISION   ONE
                    114:       PARAMETER          ( ONE = 1.0D+0 )
                    115:       DOUBLE PRECISION   TWO
                    116:       PARAMETER          ( TWO = 2.0D+0 )
                    117:       DOUBLE PRECISION   THREE
                    118:       PARAMETER          ( THREE = 3.0D+0 )
                    119: *     ..
                    120: *     .. Local Scalars ..
                    121:       LOGICAL            UPPER
                    122:       INTEGER            COUNT, I, J, K, KASE, L, NZ
                    123:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    124: *     ..
                    125: *     .. Local Arrays ..
                    126:       INTEGER            ISAVE( 3 )
                    127: *     ..
                    128: *     .. External Subroutines ..
                    129:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPBTRS, DSBMV, XERBLA
                    130: *     ..
                    131: *     .. Intrinsic Functions ..
                    132:       INTRINSIC          ABS, MAX, MIN
                    133: *     ..
                    134: *     .. External Functions ..
                    135:       LOGICAL            LSAME
                    136:       DOUBLE PRECISION   DLAMCH
                    137:       EXTERNAL           LSAME, DLAMCH
                    138: *     ..
                    139: *     .. Executable Statements ..
                    140: *
                    141: *     Test the input parameters.
                    142: *
                    143:       INFO = 0
                    144:       UPPER = LSAME( UPLO, 'U' )
                    145:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    146:          INFO = -1
                    147:       ELSE IF( N.LT.0 ) THEN
                    148:          INFO = -2
                    149:       ELSE IF( KD.LT.0 ) THEN
                    150:          INFO = -3
                    151:       ELSE IF( NRHS.LT.0 ) THEN
                    152:          INFO = -4
                    153:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    154:          INFO = -6
                    155:       ELSE IF( LDAFB.LT.KD+1 ) THEN
                    156:          INFO = -8
                    157:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    158:          INFO = -10
                    159:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    160:          INFO = -12
                    161:       END IF
                    162:       IF( INFO.NE.0 ) THEN
                    163:          CALL XERBLA( 'DPBRFS', -INFO )
                    164:          RETURN
                    165:       END IF
                    166: *
                    167: *     Quick return if possible
                    168: *
                    169:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    170:          DO 10 J = 1, NRHS
                    171:             FERR( J ) = ZERO
                    172:             BERR( J ) = ZERO
                    173:    10    CONTINUE
                    174:          RETURN
                    175:       END IF
                    176: *
                    177: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    178: *
                    179:       NZ = MIN( N+1, 2*KD+2 )
                    180:       EPS = DLAMCH( 'Epsilon' )
                    181:       SAFMIN = DLAMCH( 'Safe minimum' )
                    182:       SAFE1 = NZ*SAFMIN
                    183:       SAFE2 = SAFE1 / EPS
                    184: *
                    185: *     Do for each right hand side
                    186: *
                    187:       DO 140 J = 1, NRHS
                    188: *
                    189:          COUNT = 1
                    190:          LSTRES = THREE
                    191:    20    CONTINUE
                    192: *
                    193: *        Loop until stopping criterion is satisfied.
                    194: *
                    195: *        Compute residual R = B - A * X
                    196: *
                    197:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    198:          CALL DSBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
                    199:      $               WORK( N+1 ), 1 )
                    200: *
                    201: *        Compute componentwise relative backward error from formula
                    202: *
                    203: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    204: *
                    205: *        where abs(Z) is the componentwise absolute value of the matrix
                    206: *        or vector Z.  If the i-th component of the denominator is less
                    207: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    208: *        numerator and denominator before dividing.
                    209: *
                    210:          DO 30 I = 1, N
                    211:             WORK( I ) = ABS( B( I, J ) )
                    212:    30    CONTINUE
                    213: *
                    214: *        Compute abs(A)*abs(X) + abs(B).
                    215: *
                    216:          IF( UPPER ) THEN
                    217:             DO 50 K = 1, N
                    218:                S = ZERO
                    219:                XK = ABS( X( K, J ) )
                    220:                L = KD + 1 - K
                    221:                DO 40 I = MAX( 1, K-KD ), K - 1
                    222:                   WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
                    223:                   S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
                    224:    40          CONTINUE
                    225:                WORK( K ) = WORK( K ) + ABS( AB( KD+1, K ) )*XK + S
                    226:    50       CONTINUE
                    227:          ELSE
                    228:             DO 70 K = 1, N
                    229:                S = ZERO
                    230:                XK = ABS( X( K, J ) )
                    231:                WORK( K ) = WORK( K ) + ABS( AB( 1, K ) )*XK
                    232:                L = 1 - K
                    233:                DO 60 I = K + 1, MIN( N, K+KD )
                    234:                   WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
                    235:                   S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
                    236:    60          CONTINUE
                    237:                WORK( K ) = WORK( K ) + S
                    238:    70       CONTINUE
                    239:          END IF
                    240:          S = ZERO
                    241:          DO 80 I = 1, N
                    242:             IF( WORK( I ).GT.SAFE2 ) THEN
                    243:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    244:             ELSE
                    245:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    246:      $             ( WORK( I )+SAFE1 ) )
                    247:             END IF
                    248:    80    CONTINUE
                    249:          BERR( J ) = S
                    250: *
                    251: *        Test stopping criterion. Continue iterating if
                    252: *           1) The residual BERR(J) is larger than machine epsilon, and
                    253: *           2) BERR(J) decreased by at least a factor of 2 during the
                    254: *              last iteration, and
                    255: *           3) At most ITMAX iterations tried.
                    256: *
                    257:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    258:      $       COUNT.LE.ITMAX ) THEN
                    259: *
                    260: *           Update solution and try again.
                    261: *
                    262:             CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
                    263:      $                   INFO )
                    264:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    265:             LSTRES = BERR( J )
                    266:             COUNT = COUNT + 1
                    267:             GO TO 20
                    268:          END IF
                    269: *
                    270: *        Bound error from formula
                    271: *
                    272: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    273: *        norm( abs(inv(A))*
                    274: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    275: *
                    276: *        where
                    277: *          norm(Z) is the magnitude of the largest component of Z
                    278: *          inv(A) is the inverse of A
                    279: *          abs(Z) is the componentwise absolute value of the matrix or
                    280: *             vector Z
                    281: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    282: *          EPS is machine epsilon
                    283: *
                    284: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    285: *        is incremented by SAFE1 if the i-th component of
                    286: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    287: *
                    288: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    289: *           inv(A) * diag(W),
                    290: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    291: *
                    292:          DO 90 I = 1, N
                    293:             IF( WORK( I ).GT.SAFE2 ) THEN
                    294:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    295:             ELSE
                    296:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    297:             END IF
                    298:    90    CONTINUE
                    299: *
                    300:          KASE = 0
                    301:   100    CONTINUE
                    302:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    303:      $                KASE, ISAVE )
                    304:          IF( KASE.NE.0 ) THEN
                    305:             IF( KASE.EQ.1 ) THEN
                    306: *
                    307: *              Multiply by diag(W)*inv(A').
                    308: *
                    309:                CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
                    310:      $                      INFO )
                    311:                DO 110 I = 1, N
                    312:                   WORK( N+I ) = WORK( N+I )*WORK( I )
                    313:   110          CONTINUE
                    314:             ELSE IF( KASE.EQ.2 ) THEN
                    315: *
                    316: *              Multiply by inv(A)*diag(W).
                    317: *
                    318:                DO 120 I = 1, N
                    319:                   WORK( N+I ) = WORK( N+I )*WORK( I )
                    320:   120          CONTINUE
                    321:                CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
                    322:      $                      INFO )
                    323:             END IF
                    324:             GO TO 100
                    325:          END IF
                    326: *
                    327: *        Normalize error.
                    328: *
                    329:          LSTRES = ZERO
                    330:          DO 130 I = 1, N
                    331:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    332:   130    CONTINUE
                    333:          IF( LSTRES.NE.ZERO )
                    334:      $      FERR( J ) = FERR( J ) / LSTRES
                    335: *
                    336:   140 CONTINUE
                    337: *
                    338:       RETURN
                    339: *
                    340: *     End of DPBRFS
                    341: *
                    342:       END

CVSweb interface <joel.bertrand@systella.fr>