Annotation of rpl/lapack/lapack/dpbrfs.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
        !             2:      $                   LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       CHARACTER          UPLO
        !            13:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            IWORK( * )
        !            17:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            18:      $                   BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  DPBRFS improves the computed solution to a system of linear
        !            25: *  equations when the coefficient matrix is symmetric positive definite
        !            26: *  and banded, and provides error bounds and backward error estimates
        !            27: *  for the solution.
        !            28: *
        !            29: *  Arguments
        !            30: *  =========
        !            31: *
        !            32: *  UPLO    (input) CHARACTER*1
        !            33: *          = 'U':  Upper triangle of A is stored;
        !            34: *          = 'L':  Lower triangle of A is stored.
        !            35: *
        !            36: *  N       (input) INTEGER
        !            37: *          The order of the matrix A.  N >= 0.
        !            38: *
        !            39: *  KD      (input) INTEGER
        !            40: *          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            41: *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
        !            42: *
        !            43: *  NRHS    (input) INTEGER
        !            44: *          The number of right hand sides, i.e., the number of columns
        !            45: *          of the matrices B and X.  NRHS >= 0.
        !            46: *
        !            47: *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
        !            48: *          The upper or lower triangle of the symmetric band matrix A,
        !            49: *          stored in the first KD+1 rows of the array.  The j-th column
        !            50: *          of A is stored in the j-th column of the array AB as follows:
        !            51: *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
        !            52: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
        !            53: *
        !            54: *  LDAB    (input) INTEGER
        !            55: *          The leading dimension of the array AB.  LDAB >= KD+1.
        !            56: *
        !            57: *  AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N)
        !            58: *          The triangular factor U or L from the Cholesky factorization
        !            59: *          A = U**T*U or A = L*L**T of the band matrix A as computed by
        !            60: *          DPBTRF, in the same storage format as A (see AB).
        !            61: *
        !            62: *  LDAFB   (input) INTEGER
        !            63: *          The leading dimension of the array AFB.  LDAFB >= KD+1.
        !            64: *
        !            65: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !            66: *          The right hand side matrix B.
        !            67: *
        !            68: *  LDB     (input) INTEGER
        !            69: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            70: *
        !            71: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !            72: *          On entry, the solution matrix X, as computed by DPBTRS.
        !            73: *          On exit, the improved solution matrix X.
        !            74: *
        !            75: *  LDX     (input) INTEGER
        !            76: *          The leading dimension of the array X.  LDX >= max(1,N).
        !            77: *
        !            78: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !            79: *          The estimated forward error bound for each solution vector
        !            80: *          X(j) (the j-th column of the solution matrix X).
        !            81: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !            82: *          is an estimated upper bound for the magnitude of the largest
        !            83: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !            84: *          largest element in X(j).  The estimate is as reliable as
        !            85: *          the estimate for RCOND, and is almost always a slight
        !            86: *          overestimate of the true error.
        !            87: *
        !            88: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !            89: *          The componentwise relative backward error of each solution
        !            90: *          vector X(j) (i.e., the smallest relative change in
        !            91: *          any element of A or B that makes X(j) an exact solution).
        !            92: *
        !            93: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
        !            94: *
        !            95: *  IWORK   (workspace) INTEGER array, dimension (N)
        !            96: *
        !            97: *  INFO    (output) INTEGER
        !            98: *          = 0:  successful exit
        !            99: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           100: *
        !           101: *  Internal Parameters
        !           102: *  ===================
        !           103: *
        !           104: *  ITMAX is the maximum number of steps of iterative refinement.
        !           105: *
        !           106: *  =====================================================================
        !           107: *
        !           108: *     .. Parameters ..
        !           109:       INTEGER            ITMAX
        !           110:       PARAMETER          ( ITMAX = 5 )
        !           111:       DOUBLE PRECISION   ZERO
        !           112:       PARAMETER          ( ZERO = 0.0D+0 )
        !           113:       DOUBLE PRECISION   ONE
        !           114:       PARAMETER          ( ONE = 1.0D+0 )
        !           115:       DOUBLE PRECISION   TWO
        !           116:       PARAMETER          ( TWO = 2.0D+0 )
        !           117:       DOUBLE PRECISION   THREE
        !           118:       PARAMETER          ( THREE = 3.0D+0 )
        !           119: *     ..
        !           120: *     .. Local Scalars ..
        !           121:       LOGICAL            UPPER
        !           122:       INTEGER            COUNT, I, J, K, KASE, L, NZ
        !           123:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
        !           124: *     ..
        !           125: *     .. Local Arrays ..
        !           126:       INTEGER            ISAVE( 3 )
        !           127: *     ..
        !           128: *     .. External Subroutines ..
        !           129:       EXTERNAL           DAXPY, DCOPY, DLACN2, DPBTRS, DSBMV, XERBLA
        !           130: *     ..
        !           131: *     .. Intrinsic Functions ..
        !           132:       INTRINSIC          ABS, MAX, MIN
        !           133: *     ..
        !           134: *     .. External Functions ..
        !           135:       LOGICAL            LSAME
        !           136:       DOUBLE PRECISION   DLAMCH
        !           137:       EXTERNAL           LSAME, DLAMCH
        !           138: *     ..
        !           139: *     .. Executable Statements ..
        !           140: *
        !           141: *     Test the input parameters.
        !           142: *
        !           143:       INFO = 0
        !           144:       UPPER = LSAME( UPLO, 'U' )
        !           145:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           146:          INFO = -1
        !           147:       ELSE IF( N.LT.0 ) THEN
        !           148:          INFO = -2
        !           149:       ELSE IF( KD.LT.0 ) THEN
        !           150:          INFO = -3
        !           151:       ELSE IF( NRHS.LT.0 ) THEN
        !           152:          INFO = -4
        !           153:       ELSE IF( LDAB.LT.KD+1 ) THEN
        !           154:          INFO = -6
        !           155:       ELSE IF( LDAFB.LT.KD+1 ) THEN
        !           156:          INFO = -8
        !           157:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           158:          INFO = -10
        !           159:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           160:          INFO = -12
        !           161:       END IF
        !           162:       IF( INFO.NE.0 ) THEN
        !           163:          CALL XERBLA( 'DPBRFS', -INFO )
        !           164:          RETURN
        !           165:       END IF
        !           166: *
        !           167: *     Quick return if possible
        !           168: *
        !           169:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
        !           170:          DO 10 J = 1, NRHS
        !           171:             FERR( J ) = ZERO
        !           172:             BERR( J ) = ZERO
        !           173:    10    CONTINUE
        !           174:          RETURN
        !           175:       END IF
        !           176: *
        !           177: *     NZ = maximum number of nonzero elements in each row of A, plus 1
        !           178: *
        !           179:       NZ = MIN( N+1, 2*KD+2 )
        !           180:       EPS = DLAMCH( 'Epsilon' )
        !           181:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           182:       SAFE1 = NZ*SAFMIN
        !           183:       SAFE2 = SAFE1 / EPS
        !           184: *
        !           185: *     Do for each right hand side
        !           186: *
        !           187:       DO 140 J = 1, NRHS
        !           188: *
        !           189:          COUNT = 1
        !           190:          LSTRES = THREE
        !           191:    20    CONTINUE
        !           192: *
        !           193: *        Loop until stopping criterion is satisfied.
        !           194: *
        !           195: *        Compute residual R = B - A * X
        !           196: *
        !           197:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
        !           198:          CALL DSBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
        !           199:      $               WORK( N+1 ), 1 )
        !           200: *
        !           201: *        Compute componentwise relative backward error from formula
        !           202: *
        !           203: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
        !           204: *
        !           205: *        where abs(Z) is the componentwise absolute value of the matrix
        !           206: *        or vector Z.  If the i-th component of the denominator is less
        !           207: *        than SAFE2, then SAFE1 is added to the i-th components of the
        !           208: *        numerator and denominator before dividing.
        !           209: *
        !           210:          DO 30 I = 1, N
        !           211:             WORK( I ) = ABS( B( I, J ) )
        !           212:    30    CONTINUE
        !           213: *
        !           214: *        Compute abs(A)*abs(X) + abs(B).
        !           215: *
        !           216:          IF( UPPER ) THEN
        !           217:             DO 50 K = 1, N
        !           218:                S = ZERO
        !           219:                XK = ABS( X( K, J ) )
        !           220:                L = KD + 1 - K
        !           221:                DO 40 I = MAX( 1, K-KD ), K - 1
        !           222:                   WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
        !           223:                   S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
        !           224:    40          CONTINUE
        !           225:                WORK( K ) = WORK( K ) + ABS( AB( KD+1, K ) )*XK + S
        !           226:    50       CONTINUE
        !           227:          ELSE
        !           228:             DO 70 K = 1, N
        !           229:                S = ZERO
        !           230:                XK = ABS( X( K, J ) )
        !           231:                WORK( K ) = WORK( K ) + ABS( AB( 1, K ) )*XK
        !           232:                L = 1 - K
        !           233:                DO 60 I = K + 1, MIN( N, K+KD )
        !           234:                   WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
        !           235:                   S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
        !           236:    60          CONTINUE
        !           237:                WORK( K ) = WORK( K ) + S
        !           238:    70       CONTINUE
        !           239:          END IF
        !           240:          S = ZERO
        !           241:          DO 80 I = 1, N
        !           242:             IF( WORK( I ).GT.SAFE2 ) THEN
        !           243:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
        !           244:             ELSE
        !           245:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
        !           246:      $             ( WORK( I )+SAFE1 ) )
        !           247:             END IF
        !           248:    80    CONTINUE
        !           249:          BERR( J ) = S
        !           250: *
        !           251: *        Test stopping criterion. Continue iterating if
        !           252: *           1) The residual BERR(J) is larger than machine epsilon, and
        !           253: *           2) BERR(J) decreased by at least a factor of 2 during the
        !           254: *              last iteration, and
        !           255: *           3) At most ITMAX iterations tried.
        !           256: *
        !           257:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
        !           258:      $       COUNT.LE.ITMAX ) THEN
        !           259: *
        !           260: *           Update solution and try again.
        !           261: *
        !           262:             CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
        !           263:      $                   INFO )
        !           264:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
        !           265:             LSTRES = BERR( J )
        !           266:             COUNT = COUNT + 1
        !           267:             GO TO 20
        !           268:          END IF
        !           269: *
        !           270: *        Bound error from formula
        !           271: *
        !           272: *        norm(X - XTRUE) / norm(X) .le. FERR =
        !           273: *        norm( abs(inv(A))*
        !           274: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
        !           275: *
        !           276: *        where
        !           277: *          norm(Z) is the magnitude of the largest component of Z
        !           278: *          inv(A) is the inverse of A
        !           279: *          abs(Z) is the componentwise absolute value of the matrix or
        !           280: *             vector Z
        !           281: *          NZ is the maximum number of nonzeros in any row of A, plus 1
        !           282: *          EPS is machine epsilon
        !           283: *
        !           284: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
        !           285: *        is incremented by SAFE1 if the i-th component of
        !           286: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
        !           287: *
        !           288: *        Use DLACN2 to estimate the infinity-norm of the matrix
        !           289: *           inv(A) * diag(W),
        !           290: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
        !           291: *
        !           292:          DO 90 I = 1, N
        !           293:             IF( WORK( I ).GT.SAFE2 ) THEN
        !           294:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
        !           295:             ELSE
        !           296:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
        !           297:             END IF
        !           298:    90    CONTINUE
        !           299: *
        !           300:          KASE = 0
        !           301:   100    CONTINUE
        !           302:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
        !           303:      $                KASE, ISAVE )
        !           304:          IF( KASE.NE.0 ) THEN
        !           305:             IF( KASE.EQ.1 ) THEN
        !           306: *
        !           307: *              Multiply by diag(W)*inv(A').
        !           308: *
        !           309:                CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
        !           310:      $                      INFO )
        !           311:                DO 110 I = 1, N
        !           312:                   WORK( N+I ) = WORK( N+I )*WORK( I )
        !           313:   110          CONTINUE
        !           314:             ELSE IF( KASE.EQ.2 ) THEN
        !           315: *
        !           316: *              Multiply by inv(A)*diag(W).
        !           317: *
        !           318:                DO 120 I = 1, N
        !           319:                   WORK( N+I ) = WORK( N+I )*WORK( I )
        !           320:   120          CONTINUE
        !           321:                CALL DPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
        !           322:      $                      INFO )
        !           323:             END IF
        !           324:             GO TO 100
        !           325:          END IF
        !           326: *
        !           327: *        Normalize error.
        !           328: *
        !           329:          LSTRES = ZERO
        !           330:          DO 130 I = 1, N
        !           331:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
        !           332:   130    CONTINUE
        !           333:          IF( LSTRES.NE.ZERO )
        !           334:      $      FERR( J ) = FERR( J ) / LSTRES
        !           335: *
        !           336:   140 CONTINUE
        !           337: *
        !           338:       RETURN
        !           339: *
        !           340: *     End of DPBRFS
        !           341: *
        !           342:       END

CVSweb interface <joel.bertrand@systella.fr>