Annotation of rpl/lapack/lapack/dormr3.f, revision 1.15

1.12      bertrand    1: *> \brief \b DORMR3 multiplies a general matrix by the orthogonal matrix from a RZ factorization determined by stzrzf (unblocked algorithm).
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DORMR3 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormr3.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormr3.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormr3.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
                     22: *                          WORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          SIDE, TRANS
                     26: *       INTEGER            INFO, K, L, LDA, LDC, M, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
                     30: *       ..
                     31: *  
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DORMR3 overwrites the general real m by n matrix C with
                     39: *>
                     40: *>       Q * C  if SIDE = 'L' and TRANS = 'N', or
                     41: *>
                     42: *>       Q**T* C  if SIDE = 'L' and TRANS = 'C', or
                     43: *>
                     44: *>       C * Q  if SIDE = 'R' and TRANS = 'N', or
                     45: *>
                     46: *>       C * Q**T if SIDE = 'R' and TRANS = 'C',
                     47: *>
                     48: *> where Q is a real orthogonal matrix defined as the product of k
                     49: *> elementary reflectors
                     50: *>
                     51: *>       Q = H(1) H(2) . . . H(k)
                     52: *>
                     53: *> as returned by DTZRZF. Q is of order m if SIDE = 'L' and of order n
                     54: *> if SIDE = 'R'.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] SIDE
                     61: *> \verbatim
                     62: *>          SIDE is CHARACTER*1
                     63: *>          = 'L': apply Q or Q**T from the Left
                     64: *>          = 'R': apply Q or Q**T from the Right
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] TRANS
                     68: *> \verbatim
                     69: *>          TRANS is CHARACTER*1
                     70: *>          = 'N': apply Q  (No transpose)
                     71: *>          = 'T': apply Q**T (Transpose)
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] M
                     75: *> \verbatim
                     76: *>          M is INTEGER
                     77: *>          The number of rows of the matrix C. M >= 0.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>          The number of columns of the matrix C. N >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] K
                     87: *> \verbatim
                     88: *>          K is INTEGER
                     89: *>          The number of elementary reflectors whose product defines
                     90: *>          the matrix Q.
                     91: *>          If SIDE = 'L', M >= K >= 0;
                     92: *>          if SIDE = 'R', N >= K >= 0.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] L
                     96: *> \verbatim
                     97: *>          L is INTEGER
                     98: *>          The number of columns of the matrix A containing
                     99: *>          the meaningful part of the Householder reflectors.
                    100: *>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] A
                    104: *> \verbatim
                    105: *>          A is DOUBLE PRECISION array, dimension
                    106: *>                               (LDA,M) if SIDE = 'L',
                    107: *>                               (LDA,N) if SIDE = 'R'
                    108: *>          The i-th row must contain the vector which defines the
                    109: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
                    110: *>          DTZRZF in the last k rows of its array argument A.
                    111: *>          A is modified by the routine but restored on exit.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] LDA
                    115: *> \verbatim
                    116: *>          LDA is INTEGER
                    117: *>          The leading dimension of the array A. LDA >= max(1,K).
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] TAU
                    121: *> \verbatim
                    122: *>          TAU is DOUBLE PRECISION array, dimension (K)
                    123: *>          TAU(i) must contain the scalar factor of the elementary
                    124: *>          reflector H(i), as returned by DTZRZF.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in,out] C
                    128: *> \verbatim
                    129: *>          C is DOUBLE PRECISION array, dimension (LDC,N)
                    130: *>          On entry, the m-by-n matrix C.
                    131: *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LDC
                    135: *> \verbatim
                    136: *>          LDC is INTEGER
                    137: *>          The leading dimension of the array C. LDC >= max(1,M).
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[out] WORK
                    141: *> \verbatim
                    142: *>          WORK is DOUBLE PRECISION array, dimension
                    143: *>                                   (N) if SIDE = 'L',
                    144: *>                                   (M) if SIDE = 'R'
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[out] INFO
                    148: *> \verbatim
                    149: *>          INFO is INTEGER
                    150: *>          = 0: successful exit
                    151: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    152: *> \endverbatim
                    153: *
                    154: *  Authors:
                    155: *  ========
                    156: *
                    157: *> \author Univ. of Tennessee 
                    158: *> \author Univ. of California Berkeley 
                    159: *> \author Univ. of Colorado Denver 
                    160: *> \author NAG Ltd. 
                    161: *
1.12      bertrand  162: *> \date September 2012
1.9       bertrand  163: *
                    164: *> \ingroup doubleOTHERcomputational
                    165: *
                    166: *> \par Contributors:
                    167: *  ==================
                    168: *>
                    169: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
                    170: *
                    171: *> \par Further Details:
                    172: *  =====================
                    173: *>
                    174: *> \verbatim
                    175: *> \endverbatim
                    176: *>
                    177: *  =====================================================================
1.1       bertrand  178:       SUBROUTINE DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
                    179:      $                   WORK, INFO )
                    180: *
1.12      bertrand  181: *  -- LAPACK computational routine (version 3.4.2) --
1.1       bertrand  182: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    183: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.12      bertrand  184: *     September 2012
1.1       bertrand  185: *
                    186: *     .. Scalar Arguments ..
                    187:       CHARACTER          SIDE, TRANS
                    188:       INTEGER            INFO, K, L, LDA, LDC, M, N
                    189: *     ..
                    190: *     .. Array Arguments ..
                    191:       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
                    192: *     ..
                    193: *
                    194: *  =====================================================================
                    195: *
                    196: *     .. Local Scalars ..
                    197:       LOGICAL            LEFT, NOTRAN
                    198:       INTEGER            I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
                    199: *     ..
                    200: *     .. External Functions ..
                    201:       LOGICAL            LSAME
                    202:       EXTERNAL           LSAME
                    203: *     ..
                    204: *     .. External Subroutines ..
                    205:       EXTERNAL           DLARZ, XERBLA
                    206: *     ..
                    207: *     .. Intrinsic Functions ..
                    208:       INTRINSIC          MAX
                    209: *     ..
                    210: *     .. Executable Statements ..
                    211: *
                    212: *     Test the input arguments
                    213: *
                    214:       INFO = 0
                    215:       LEFT = LSAME( SIDE, 'L' )
                    216:       NOTRAN = LSAME( TRANS, 'N' )
                    217: *
                    218: *     NQ is the order of Q
                    219: *
                    220:       IF( LEFT ) THEN
                    221:          NQ = M
                    222:       ELSE
                    223:          NQ = N
                    224:       END IF
                    225:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
                    226:          INFO = -1
                    227:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
                    228:          INFO = -2
                    229:       ELSE IF( M.LT.0 ) THEN
                    230:          INFO = -3
                    231:       ELSE IF( N.LT.0 ) THEN
                    232:          INFO = -4
                    233:       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
                    234:          INFO = -5
                    235:       ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
                    236:      $         ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
                    237:          INFO = -6
                    238:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
                    239:          INFO = -8
                    240:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
                    241:          INFO = -11
                    242:       END IF
                    243:       IF( INFO.NE.0 ) THEN
                    244:          CALL XERBLA( 'DORMR3', -INFO )
                    245:          RETURN
                    246:       END IF
                    247: *
                    248: *     Quick return if possible
                    249: *
                    250:       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
                    251:      $   RETURN
                    252: *
                    253:       IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
                    254:          I1 = 1
                    255:          I2 = K
                    256:          I3 = 1
                    257:       ELSE
                    258:          I1 = K
                    259:          I2 = 1
                    260:          I3 = -1
                    261:       END IF
                    262: *
                    263:       IF( LEFT ) THEN
                    264:          NI = N
                    265:          JA = M - L + 1
                    266:          JC = 1
                    267:       ELSE
                    268:          MI = M
                    269:          JA = N - L + 1
                    270:          IC = 1
                    271:       END IF
                    272: *
                    273:       DO 10 I = I1, I2, I3
                    274:          IF( LEFT ) THEN
                    275: *
1.8       bertrand  276: *           H(i) or H(i)**T is applied to C(i:m,1:n)
1.1       bertrand  277: *
                    278:             MI = M - I + 1
                    279:             IC = I
                    280:          ELSE
                    281: *
1.8       bertrand  282: *           H(i) or H(i)**T is applied to C(1:m,i:n)
1.1       bertrand  283: *
                    284:             NI = N - I + 1
                    285:             JC = I
                    286:          END IF
                    287: *
1.8       bertrand  288: *        Apply H(i) or H(i)**T
1.1       bertrand  289: *
                    290:          CALL DLARZ( SIDE, MI, NI, L, A( I, JA ), LDA, TAU( I ),
                    291:      $               C( IC, JC ), LDC, WORK )
                    292: *
                    293:    10 CONTINUE
                    294: *
                    295:       RETURN
                    296: *
                    297: *     End of DORMR3
                    298: *
                    299:       END

CVSweb interface <joel.bertrand@systella.fr>