File:  [local] / rpl / lapack / lapack / dormql.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Thu Nov 26 11:44:19 2015 UTC (8 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, HEAD
Mise à jour de Lapack (3.6.0) et du numéro de version du RPL/2.

    1: *> \brief \b DORMQL
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DORMQL + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormql.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormql.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormql.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
   22: *                          WORK, LWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          SIDE, TRANS
   26: *       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DORMQL overwrites the general real M-by-N matrix C with
   39: *>
   40: *>                 SIDE = 'L'     SIDE = 'R'
   41: *> TRANS = 'N':      Q * C          C * Q
   42: *> TRANS = 'T':      Q**T * C       C * Q**T
   43: *>
   44: *> where Q is a real orthogonal matrix defined as the product of k
   45: *> elementary reflectors
   46: *>
   47: *>       Q = H(k) . . . H(2) H(1)
   48: *>
   49: *> as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N
   50: *> if SIDE = 'R'.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] SIDE
   57: *> \verbatim
   58: *>          SIDE is CHARACTER*1
   59: *>          = 'L': apply Q or Q**T from the Left;
   60: *>          = 'R': apply Q or Q**T from the Right.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] TRANS
   64: *> \verbatim
   65: *>          TRANS is CHARACTER*1
   66: *>          = 'N':  No transpose, apply Q;
   67: *>          = 'T':  Transpose, apply Q**T.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] M
   71: *> \verbatim
   72: *>          M is INTEGER
   73: *>          The number of rows of the matrix C. M >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The number of columns of the matrix C. N >= 0.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] K
   83: *> \verbatim
   84: *>          K is INTEGER
   85: *>          The number of elementary reflectors whose product defines
   86: *>          the matrix Q.
   87: *>          If SIDE = 'L', M >= K >= 0;
   88: *>          if SIDE = 'R', N >= K >= 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] A
   92: *> \verbatim
   93: *>          A is DOUBLE PRECISION array, dimension (LDA,K)
   94: *>          The i-th column must contain the vector which defines the
   95: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
   96: *>          DGEQLF in the last k columns of its array argument A.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDA
  100: *> \verbatim
  101: *>          LDA is INTEGER
  102: *>          The leading dimension of the array A.
  103: *>          If SIDE = 'L', LDA >= max(1,M);
  104: *>          if SIDE = 'R', LDA >= max(1,N).
  105: *> \endverbatim
  106: *>
  107: *> \param[in] TAU
  108: *> \verbatim
  109: *>          TAU is DOUBLE PRECISION array, dimension (K)
  110: *>          TAU(i) must contain the scalar factor of the elementary
  111: *>          reflector H(i), as returned by DGEQLF.
  112: *> \endverbatim
  113: *>
  114: *> \param[in,out] C
  115: *> \verbatim
  116: *>          C is DOUBLE PRECISION array, dimension (LDC,N)
  117: *>          On entry, the M-by-N matrix C.
  118: *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  119: *> \endverbatim
  120: *>
  121: *> \param[in] LDC
  122: *> \verbatim
  123: *>          LDC is INTEGER
  124: *>          The leading dimension of the array C. LDC >= max(1,M).
  125: *> \endverbatim
  126: *>
  127: *> \param[out] WORK
  128: *> \verbatim
  129: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  130: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LWORK
  134: *> \verbatim
  135: *>          LWORK is INTEGER
  136: *>          The dimension of the array WORK.
  137: *>          If SIDE = 'L', LWORK >= max(1,N);
  138: *>          if SIDE = 'R', LWORK >= max(1,M).
  139: *>          For good performance, LWORK should generally be larger.
  140: *>
  141: *>          If LWORK = -1, then a workspace query is assumed; the routine
  142: *>          only calculates the optimal size of the WORK array, returns
  143: *>          this value as the first entry of the WORK array, and no error
  144: *>          message related to LWORK is issued by XERBLA.
  145: *> \endverbatim
  146: *>
  147: *> \param[out] INFO
  148: *> \verbatim
  149: *>          INFO is INTEGER
  150: *>          = 0:  successful exit
  151: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  152: *> \endverbatim
  153: *
  154: *  Authors:
  155: *  ========
  156: *
  157: *> \author Univ. of Tennessee 
  158: *> \author Univ. of California Berkeley 
  159: *> \author Univ. of Colorado Denver 
  160: *> \author NAG Ltd. 
  161: *
  162: *> \date November 2015
  163: *
  164: *> \ingroup doubleOTHERcomputational
  165: *
  166: *  =====================================================================
  167:       SUBROUTINE DORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  168:      $                   WORK, LWORK, INFO )
  169: *
  170: *  -- LAPACK computational routine (version 3.6.0) --
  171: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  172: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  173: *     November 2015
  174: *
  175: *     .. Scalar Arguments ..
  176:       CHARACTER          SIDE, TRANS
  177:       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
  178: *     ..
  179: *     .. Array Arguments ..
  180:       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  181: *     ..
  182: *
  183: *  =====================================================================
  184: *
  185: *     .. Parameters ..
  186:       INTEGER            NBMAX, LDT, TSIZE
  187:       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1,
  188:      $                     TSIZE = LDT*NBMAX )
  189: *     ..
  190: *     .. Local Scalars ..
  191:       LOGICAL            LEFT, LQUERY, NOTRAN
  192:       INTEGER            I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT,
  193:      $                   MI, NB, NBMIN, NI, NQ, NW
  194: *     ..
  195: *     .. External Functions ..
  196:       LOGICAL            LSAME
  197:       INTEGER            ILAENV
  198:       EXTERNAL           LSAME, ILAENV
  199: *     ..
  200: *     .. External Subroutines ..
  201:       EXTERNAL           DLARFB, DLARFT, DORM2L, XERBLA
  202: *     ..
  203: *     .. Intrinsic Functions ..
  204:       INTRINSIC          MAX, MIN
  205: *     ..
  206: *     .. Executable Statements ..
  207: *
  208: *     Test the input arguments
  209: *
  210:       INFO = 0
  211:       LEFT = LSAME( SIDE, 'L' )
  212:       NOTRAN = LSAME( TRANS, 'N' )
  213:       LQUERY = ( LWORK.EQ.-1 )
  214: *
  215: *     NQ is the order of Q and NW is the minimum dimension of WORK
  216: *
  217:       IF( LEFT ) THEN
  218:          NQ = M
  219:          NW = MAX( 1, N )
  220:       ELSE
  221:          NQ = N
  222:          NW = MAX( 1, M )
  223:       END IF
  224:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  225:          INFO = -1
  226:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  227:          INFO = -2
  228:       ELSE IF( M.LT.0 ) THEN
  229:          INFO = -3
  230:       ELSE IF( N.LT.0 ) THEN
  231:          INFO = -4
  232:       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  233:          INFO = -5
  234:       ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
  235:          INFO = -7
  236:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  237:          INFO = -10
  238:       ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  239:          INFO = -12
  240:       END IF
  241: *
  242:       IF( INFO.EQ.0 ) THEN
  243: *
  244: *        Compute the workspace requirements
  245: *
  246:          IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  247:             LWKOPT = 1
  248:          ELSE
  249:             NB = MIN( NBMAX, ILAENV( 1, 'DORMQL', SIDE // TRANS, M, N,
  250:      $                               K, -1 ) )
  251:             LWKOPT = NW*NB + TSIZE
  252:          END IF
  253:          WORK( 1 ) = LWKOPT
  254:       END IF
  255: *
  256:       IF( INFO.NE.0 ) THEN
  257:          CALL XERBLA( 'DORMQL', -INFO )
  258:          RETURN
  259:       ELSE IF( LQUERY ) THEN
  260:          RETURN
  261:       END IF
  262: *
  263: *     Quick return if possible
  264: *
  265:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  266:          RETURN
  267:       END IF
  268: *
  269:       NBMIN = 2
  270:       LDWORK = NW
  271:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
  272:          IF( LWORK.LT.NW*NB+TSIZE ) THEN
  273:             NB = (LWORK-TSIZE) / LDWORK
  274:             NBMIN = MAX( 2, ILAENV( 2, 'DORMQL', SIDE // TRANS, M, N, K,
  275:      $              -1 ) )
  276:          END IF
  277:       END IF
  278: *
  279:       IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
  280: *
  281: *        Use unblocked code
  282: *
  283:          CALL DORM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
  284:      $                IINFO )
  285:       ELSE
  286: *
  287: *        Use blocked code
  288: *
  289:          IWT = 1 + NW*NB
  290:          IF( ( LEFT .AND. NOTRAN ) .OR.
  291:      $       ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
  292:             I1 = 1
  293:             I2 = K
  294:             I3 = NB
  295:          ELSE
  296:             I1 = ( ( K-1 ) / NB )*NB + 1
  297:             I2 = 1
  298:             I3 = -NB
  299:          END IF
  300: *
  301:          IF( LEFT ) THEN
  302:             NI = N
  303:          ELSE
  304:             MI = M
  305:          END IF
  306: *
  307:          DO 10 I = I1, I2, I3
  308:             IB = MIN( NB, K-I+1 )
  309: *
  310: *           Form the triangular factor of the block reflector
  311: *           H = H(i+ib-1) . . . H(i+1) H(i)
  312: *
  313:             CALL DLARFT( 'Backward', 'Columnwise', NQ-K+I+IB-1, IB,
  314:      $                   A( 1, I ), LDA, TAU( I ), WORK( IWT ), LDT )
  315:             IF( LEFT ) THEN
  316: *
  317: *              H or H**T is applied to C(1:m-k+i+ib-1,1:n)
  318: *
  319:                MI = M - K + I + IB - 1
  320:             ELSE
  321: *
  322: *              H or H**T is applied to C(1:m,1:n-k+i+ib-1)
  323: *
  324:                NI = N - K + I + IB - 1
  325:             END IF
  326: *
  327: *           Apply H or H**T
  328: *
  329:             CALL DLARFB( SIDE, TRANS, 'Backward', 'Columnwise', MI, NI,
  330:      $                   IB, A( 1, I ), LDA, WORK( IWT ), LDT, C, LDC,
  331:      $                   WORK, LDWORK )
  332:    10    CONTINUE
  333:       END IF
  334:       WORK( 1 ) = LWKOPT
  335:       RETURN
  336: *
  337: *     End of DORMQL
  338: *
  339:       END

CVSweb interface <joel.bertrand@systella.fr>