File:  [local] / rpl / lapack / lapack / dormlq.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
    2:      $                   WORK, LWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          SIDE, TRANS
   11:       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DORMLQ overwrites the general real M-by-N matrix C with
   21: *
   22: *                  SIDE = 'L'     SIDE = 'R'
   23: *  TRANS = 'N':      Q * C          C * Q
   24: *  TRANS = 'T':      Q**T * C       C * Q**T
   25: *
   26: *  where Q is a real orthogonal matrix defined as the product of k
   27: *  elementary reflectors
   28: *
   29: *        Q = H(k) . . . H(2) H(1)
   30: *
   31: *  as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
   32: *  if SIDE = 'R'.
   33: *
   34: *  Arguments
   35: *  =========
   36: *
   37: *  SIDE    (input) CHARACTER*1
   38: *          = 'L': apply Q or Q**T from the Left;
   39: *          = 'R': apply Q or Q**T from the Right.
   40: *
   41: *  TRANS   (input) CHARACTER*1
   42: *          = 'N':  No transpose, apply Q;
   43: *          = 'T':  Transpose, apply Q**T.
   44: *
   45: *  M       (input) INTEGER
   46: *          The number of rows of the matrix C. M >= 0.
   47: *
   48: *  N       (input) INTEGER
   49: *          The number of columns of the matrix C. N >= 0.
   50: *
   51: *  K       (input) INTEGER
   52: *          The number of elementary reflectors whose product defines
   53: *          the matrix Q.
   54: *          If SIDE = 'L', M >= K >= 0;
   55: *          if SIDE = 'R', N >= K >= 0.
   56: *
   57: *  A       (input) DOUBLE PRECISION array, dimension
   58: *                               (LDA,M) if SIDE = 'L',
   59: *                               (LDA,N) if SIDE = 'R'
   60: *          The i-th row must contain the vector which defines the
   61: *          elementary reflector H(i), for i = 1,2,...,k, as returned by
   62: *          DGELQF in the first k rows of its array argument A.
   63: *          A is modified by the routine but restored on exit.
   64: *
   65: *  LDA     (input) INTEGER
   66: *          The leading dimension of the array A. LDA >= max(1,K).
   67: *
   68: *  TAU     (input) DOUBLE PRECISION array, dimension (K)
   69: *          TAU(i) must contain the scalar factor of the elementary
   70: *          reflector H(i), as returned by DGELQF.
   71: *
   72: *  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
   73: *          On entry, the M-by-N matrix C.
   74: *          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
   75: *
   76: *  LDC     (input) INTEGER
   77: *          The leading dimension of the array C. LDC >= max(1,M).
   78: *
   79: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   80: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   81: *
   82: *  LWORK   (input) INTEGER
   83: *          The dimension of the array WORK.
   84: *          If SIDE = 'L', LWORK >= max(1,N);
   85: *          if SIDE = 'R', LWORK >= max(1,M).
   86: *          For optimum performance LWORK >= N*NB if SIDE = 'L', and
   87: *          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
   88: *          blocksize.
   89: *
   90: *          If LWORK = -1, then a workspace query is assumed; the routine
   91: *          only calculates the optimal size of the WORK array, returns
   92: *          this value as the first entry of the WORK array, and no error
   93: *          message related to LWORK is issued by XERBLA.
   94: *
   95: *  INFO    (output) INTEGER
   96: *          = 0:  successful exit
   97: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   98: *
   99: *  =====================================================================
  100: *
  101: *     .. Parameters ..
  102:       INTEGER            NBMAX, LDT
  103:       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
  104: *     ..
  105: *     .. Local Scalars ..
  106:       LOGICAL            LEFT, LQUERY, NOTRAN
  107:       CHARACTER          TRANST
  108:       INTEGER            I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK,
  109:      $                   LWKOPT, MI, NB, NBMIN, NI, NQ, NW
  110: *     ..
  111: *     .. Local Arrays ..
  112:       DOUBLE PRECISION   T( LDT, NBMAX )
  113: *     ..
  114: *     .. External Functions ..
  115:       LOGICAL            LSAME
  116:       INTEGER            ILAENV
  117:       EXTERNAL           LSAME, ILAENV
  118: *     ..
  119: *     .. External Subroutines ..
  120:       EXTERNAL           DLARFB, DLARFT, DORML2, XERBLA
  121: *     ..
  122: *     .. Intrinsic Functions ..
  123:       INTRINSIC          MAX, MIN
  124: *     ..
  125: *     .. Executable Statements ..
  126: *
  127: *     Test the input arguments
  128: *
  129:       INFO = 0
  130:       LEFT = LSAME( SIDE, 'L' )
  131:       NOTRAN = LSAME( TRANS, 'N' )
  132:       LQUERY = ( LWORK.EQ.-1 )
  133: *
  134: *     NQ is the order of Q and NW is the minimum dimension of WORK
  135: *
  136:       IF( LEFT ) THEN
  137:          NQ = M
  138:          NW = N
  139:       ELSE
  140:          NQ = N
  141:          NW = M
  142:       END IF
  143:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  144:          INFO = -1
  145:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  146:          INFO = -2
  147:       ELSE IF( M.LT.0 ) THEN
  148:          INFO = -3
  149:       ELSE IF( N.LT.0 ) THEN
  150:          INFO = -4
  151:       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  152:          INFO = -5
  153:       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  154:          INFO = -7
  155:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  156:          INFO = -10
  157:       ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
  158:          INFO = -12
  159:       END IF
  160: *
  161:       IF( INFO.EQ.0 ) THEN
  162: *
  163: *        Determine the block size.  NB may be at most NBMAX, where NBMAX
  164: *        is used to define the local array T.
  165: *
  166:          NB = MIN( NBMAX, ILAENV( 1, 'DORMLQ', SIDE // TRANS, M, N, K,
  167:      $        -1 ) )
  168:          LWKOPT = MAX( 1, NW )*NB
  169:          WORK( 1 ) = LWKOPT
  170:       END IF
  171: *
  172:       IF( INFO.NE.0 ) THEN
  173:          CALL XERBLA( 'DORMLQ', -INFO )
  174:          RETURN
  175:       ELSE IF( LQUERY ) THEN
  176:          RETURN
  177:       END IF
  178: *
  179: *     Quick return if possible
  180: *
  181:       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
  182:          WORK( 1 ) = 1
  183:          RETURN
  184:       END IF
  185: *
  186:       NBMIN = 2
  187:       LDWORK = NW
  188:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
  189:          IWS = NW*NB
  190:          IF( LWORK.LT.IWS ) THEN
  191:             NB = LWORK / LDWORK
  192:             NBMIN = MAX( 2, ILAENV( 2, 'DORMLQ', SIDE // TRANS, M, N, K,
  193:      $              -1 ) )
  194:          END IF
  195:       ELSE
  196:          IWS = NW
  197:       END IF
  198: *
  199:       IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
  200: *
  201: *        Use unblocked code
  202: *
  203:          CALL DORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
  204:      $                IINFO )
  205:       ELSE
  206: *
  207: *        Use blocked code
  208: *
  209:          IF( ( LEFT .AND. NOTRAN ) .OR.
  210:      $       ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
  211:             I1 = 1
  212:             I2 = K
  213:             I3 = NB
  214:          ELSE
  215:             I1 = ( ( K-1 ) / NB )*NB + 1
  216:             I2 = 1
  217:             I3 = -NB
  218:          END IF
  219: *
  220:          IF( LEFT ) THEN
  221:             NI = N
  222:             JC = 1
  223:          ELSE
  224:             MI = M
  225:             IC = 1
  226:          END IF
  227: *
  228:          IF( NOTRAN ) THEN
  229:             TRANST = 'T'
  230:          ELSE
  231:             TRANST = 'N'
  232:          END IF
  233: *
  234:          DO 10 I = I1, I2, I3
  235:             IB = MIN( NB, K-I+1 )
  236: *
  237: *           Form the triangular factor of the block reflector
  238: *           H = H(i) H(i+1) . . . H(i+ib-1)
  239: *
  240:             CALL DLARFT( 'Forward', 'Rowwise', NQ-I+1, IB, A( I, I ),
  241:      $                   LDA, TAU( I ), T, LDT )
  242:             IF( LEFT ) THEN
  243: *
  244: *              H or H' is applied to C(i:m,1:n)
  245: *
  246:                MI = M - I + 1
  247:                IC = I
  248:             ELSE
  249: *
  250: *              H or H' is applied to C(1:m,i:n)
  251: *
  252:                NI = N - I + 1
  253:                JC = I
  254:             END IF
  255: *
  256: *           Apply H or H'
  257: *
  258:             CALL DLARFB( SIDE, TRANST, 'Forward', 'Rowwise', MI, NI, IB,
  259:      $                   A( I, I ), LDA, T, LDT, C( IC, JC ), LDC, WORK,
  260:      $                   LDWORK )
  261:    10    CONTINUE
  262:       END IF
  263:       WORK( 1 ) = LWKOPT
  264:       RETURN
  265: *
  266: *     End of DORMLQ
  267: *
  268:       END

CVSweb interface <joel.bertrand@systella.fr>