File:  [local] / rpl / lapack / lapack / dormhr.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:22 2010 UTC (14 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE DORMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
    2:      $                   LDC, WORK, LWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          SIDE, TRANS
   11:       INTEGER            IHI, ILO, INFO, LDA, LDC, LWORK, M, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DORMHR overwrites the general real M-by-N matrix C with
   21: *
   22: *                  SIDE = 'L'     SIDE = 'R'
   23: *  TRANS = 'N':      Q * C          C * Q
   24: *  TRANS = 'T':      Q**T * C       C * Q**T
   25: *
   26: *  where Q is a real orthogonal matrix of order nq, with nq = m if
   27: *  SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
   28: *  IHI-ILO elementary reflectors, as returned by DGEHRD:
   29: *
   30: *  Q = H(ilo) H(ilo+1) . . . H(ihi-1).
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  SIDE    (input) CHARACTER*1
   36: *          = 'L': apply Q or Q**T from the Left;
   37: *          = 'R': apply Q or Q**T from the Right.
   38: *
   39: *  TRANS   (input) CHARACTER*1
   40: *          = 'N':  No transpose, apply Q;
   41: *          = 'T':  Transpose, apply Q**T.
   42: *
   43: *  M       (input) INTEGER
   44: *          The number of rows of the matrix C. M >= 0.
   45: *
   46: *  N       (input) INTEGER
   47: *          The number of columns of the matrix C. N >= 0.
   48: *
   49: *  ILO     (input) INTEGER
   50: *  IHI     (input) INTEGER
   51: *          ILO and IHI must have the same values as in the previous call
   52: *          of DGEHRD. Q is equal to the unit matrix except in the
   53: *          submatrix Q(ilo+1:ihi,ilo+1:ihi).
   54: *          If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
   55: *          ILO = 1 and IHI = 0, if M = 0;
   56: *          if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
   57: *          ILO = 1 and IHI = 0, if N = 0.
   58: *
   59: *  A       (input) DOUBLE PRECISION array, dimension
   60: *                               (LDA,M) if SIDE = 'L'
   61: *                               (LDA,N) if SIDE = 'R'
   62: *          The vectors which define the elementary reflectors, as
   63: *          returned by DGEHRD.
   64: *
   65: *  LDA     (input) INTEGER
   66: *          The leading dimension of the array A.
   67: *          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
   68: *
   69: *  TAU     (input) DOUBLE PRECISION array, dimension
   70: *                               (M-1) if SIDE = 'L'
   71: *                               (N-1) if SIDE = 'R'
   72: *          TAU(i) must contain the scalar factor of the elementary
   73: *          reflector H(i), as returned by DGEHRD.
   74: *
   75: *  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
   76: *          On entry, the M-by-N matrix C.
   77: *          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
   78: *
   79: *  LDC     (input) INTEGER
   80: *          The leading dimension of the array C. LDC >= max(1,M).
   81: *
   82: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   83: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   84: *
   85: *  LWORK   (input) INTEGER
   86: *          The dimension of the array WORK.
   87: *          If SIDE = 'L', LWORK >= max(1,N);
   88: *          if SIDE = 'R', LWORK >= max(1,M).
   89: *          For optimum performance LWORK >= N*NB if SIDE = 'L', and
   90: *          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
   91: *          blocksize.
   92: *
   93: *          If LWORK = -1, then a workspace query is assumed; the routine
   94: *          only calculates the optimal size of the WORK array, returns
   95: *          this value as the first entry of the WORK array, and no error
   96: *          message related to LWORK is issued by XERBLA.
   97: *
   98: *  INFO    (output) INTEGER
   99: *          = 0:  successful exit
  100: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  101: *
  102: *  =====================================================================
  103: *
  104: *     .. Local Scalars ..
  105:       LOGICAL            LEFT, LQUERY
  106:       INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NH, NI, NQ, NW
  107: *     ..
  108: *     .. External Functions ..
  109:       LOGICAL            LSAME
  110:       INTEGER            ILAENV
  111:       EXTERNAL           LSAME, ILAENV
  112: *     ..
  113: *     .. External Subroutines ..
  114:       EXTERNAL           DORMQR, XERBLA
  115: *     ..
  116: *     .. Intrinsic Functions ..
  117:       INTRINSIC          MAX, MIN
  118: *     ..
  119: *     .. Executable Statements ..
  120: *
  121: *     Test the input arguments
  122: *
  123:       INFO = 0
  124:       NH = IHI - ILO
  125:       LEFT = LSAME( SIDE, 'L' )
  126:       LQUERY = ( LWORK.EQ.-1 )
  127: *
  128: *     NQ is the order of Q and NW is the minimum dimension of WORK
  129: *
  130:       IF( LEFT ) THEN
  131:          NQ = M
  132:          NW = N
  133:       ELSE
  134:          NQ = N
  135:          NW = M
  136:       END IF
  137:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  138:          INFO = -1
  139:       ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
  140:      $          THEN
  141:          INFO = -2
  142:       ELSE IF( M.LT.0 ) THEN
  143:          INFO = -3
  144:       ELSE IF( N.LT.0 ) THEN
  145:          INFO = -4
  146:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, NQ ) ) THEN
  147:          INFO = -5
  148:       ELSE IF( IHI.LT.MIN( ILO, NQ ) .OR. IHI.GT.NQ ) THEN
  149:          INFO = -6
  150:       ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
  151:          INFO = -8
  152:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  153:          INFO = -11
  154:       ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
  155:          INFO = -13
  156:       END IF
  157: *
  158:       IF( INFO.EQ.0 ) THEN
  159:          IF( LEFT ) THEN
  160:             NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, NH, N, NH, -1 )
  161:          ELSE
  162:             NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M, NH, NH, -1 )
  163:          END IF
  164:          LWKOPT = MAX( 1, NW )*NB
  165:          WORK( 1 ) = LWKOPT
  166:       END IF
  167: *
  168:       IF( INFO.NE.0 ) THEN
  169:          CALL XERBLA( 'DORMHR', -INFO )
  170:          RETURN
  171:       ELSE IF( LQUERY ) THEN
  172:          RETURN
  173:       END IF
  174: *
  175: *     Quick return if possible
  176: *
  177:       IF( M.EQ.0 .OR. N.EQ.0 .OR. NH.EQ.0 ) THEN
  178:          WORK( 1 ) = 1
  179:          RETURN
  180:       END IF
  181: *
  182:       IF( LEFT ) THEN
  183:          MI = NH
  184:          NI = N
  185:          I1 = ILO + 1
  186:          I2 = 1
  187:       ELSE
  188:          MI = M
  189:          NI = NH
  190:          I1 = 1
  191:          I2 = ILO + 1
  192:       END IF
  193: *
  194:       CALL DORMQR( SIDE, TRANS, MI, NI, NH, A( ILO+1, ILO ), LDA,
  195:      $             TAU( ILO ), C( I1, I2 ), LDC, WORK, LWORK, IINFO )
  196: *
  197:       WORK( 1 ) = LWKOPT
  198:       RETURN
  199: *
  200: *     End of DORMHR
  201: *
  202:       END

CVSweb interface <joel.bertrand@systella.fr>