--- rpl/lapack/lapack/dormhr.f 2010/12/21 13:53:35 1.7 +++ rpl/lapack/lapack/dormhr.f 2011/11/21 20:43:00 1.8 @@ -1,10 +1,187 @@ +*> \brief \b DORMHR +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DORMHR + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DORMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, +* LDC, WORK, LWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER SIDE, TRANS +* INTEGER IHI, ILO, INFO, LDA, LDC, LWORK, M, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DORMHR overwrites the general real M-by-N matrix C with +*> +*> SIDE = 'L' SIDE = 'R' +*> TRANS = 'N': Q * C C * Q +*> TRANS = 'T': Q**T * C C * Q**T +*> +*> where Q is a real orthogonal matrix of order nq, with nq = m if +*> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of +*> IHI-ILO elementary reflectors, as returned by DGEHRD: +*> +*> Q = H(ilo) H(ilo+1) . . . H(ihi-1). +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] SIDE +*> \verbatim +*> SIDE is CHARACTER*1 +*> = 'L': apply Q or Q**T from the Left; +*> = 'R': apply Q or Q**T from the Right. +*> \endverbatim +*> +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> = 'N': No transpose, apply Q; +*> = 'T': Transpose, apply Q**T. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix C. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix C. N >= 0. +*> \endverbatim +*> +*> \param[in] ILO +*> \verbatim +*> ILO is INTEGER +*> \endverbatim +*> +*> \param[in] IHI +*> \verbatim +*> IHI is INTEGER +*> +*> ILO and IHI must have the same values as in the previous call +*> of DGEHRD. Q is equal to the unit matrix except in the +*> submatrix Q(ilo+1:ihi,ilo+1:ihi). +*> If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and +*> ILO = 1 and IHI = 0, if M = 0; +*> if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and +*> ILO = 1 and IHI = 0, if N = 0. +*> \endverbatim +*> +*> \param[in] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension +*> (LDA,M) if SIDE = 'L' +*> (LDA,N) if SIDE = 'R' +*> The vectors which define the elementary reflectors, as +*> returned by DGEHRD. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. +*> LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. +*> \endverbatim +*> +*> \param[in] TAU +*> \verbatim +*> TAU is DOUBLE PRECISION array, dimension +*> (M-1) if SIDE = 'L' +*> (N-1) if SIDE = 'R' +*> TAU(i) must contain the scalar factor of the elementary +*> reflector H(i), as returned by DGEHRD. +*> \endverbatim +*> +*> \param[in,out] C +*> \verbatim +*> C is DOUBLE PRECISION array, dimension (LDC,N) +*> On entry, the M-by-N matrix C. +*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. +*> \endverbatim +*> +*> \param[in] LDC +*> \verbatim +*> LDC is INTEGER +*> The leading dimension of the array C. LDC >= max(1,M). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. +*> If SIDE = 'L', LWORK >= max(1,N); +*> if SIDE = 'R', LWORK >= max(1,M). +*> For optimum performance LWORK >= N*NB if SIDE = 'L', and +*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal +*> blocksize. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleOTHERcomputational +* +* ===================================================================== SUBROUTINE DORMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, $ LDC, WORK, LWORK, INFO ) * -* -- LAPACK routine (version 3.2) -- +* -- LAPACK computational routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 +* November 2011 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS @@ -14,91 +191,6 @@ DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) * .. * -* Purpose -* ======= -* -* DORMHR overwrites the general real M-by-N matrix C with -* -* SIDE = 'L' SIDE = 'R' -* TRANS = 'N': Q * C C * Q -* TRANS = 'T': Q**T * C C * Q**T -* -* where Q is a real orthogonal matrix of order nq, with nq = m if -* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of -* IHI-ILO elementary reflectors, as returned by DGEHRD: -* -* Q = H(ilo) H(ilo+1) . . . H(ihi-1). -* -* Arguments -* ========= -* -* SIDE (input) CHARACTER*1 -* = 'L': apply Q or Q**T from the Left; -* = 'R': apply Q or Q**T from the Right. -* -* TRANS (input) CHARACTER*1 -* = 'N': No transpose, apply Q; -* = 'T': Transpose, apply Q**T. -* -* M (input) INTEGER -* The number of rows of the matrix C. M >= 0. -* -* N (input) INTEGER -* The number of columns of the matrix C. N >= 0. -* -* ILO (input) INTEGER -* IHI (input) INTEGER -* ILO and IHI must have the same values as in the previous call -* of DGEHRD. Q is equal to the unit matrix except in the -* submatrix Q(ilo+1:ihi,ilo+1:ihi). -* If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and -* ILO = 1 and IHI = 0, if M = 0; -* if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and -* ILO = 1 and IHI = 0, if N = 0. -* -* A (input) DOUBLE PRECISION array, dimension -* (LDA,M) if SIDE = 'L' -* (LDA,N) if SIDE = 'R' -* The vectors which define the elementary reflectors, as -* returned by DGEHRD. -* -* LDA (input) INTEGER -* The leading dimension of the array A. -* LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. -* -* TAU (input) DOUBLE PRECISION array, dimension -* (M-1) if SIDE = 'L' -* (N-1) if SIDE = 'R' -* TAU(i) must contain the scalar factor of the elementary -* reflector H(i), as returned by DGEHRD. -* -* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) -* On entry, the M-by-N matrix C. -* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. -* -* LDC (input) INTEGER -* The leading dimension of the array C. LDC >= max(1,M). -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. -* If SIDE = 'L', LWORK >= max(1,N); -* if SIDE = 'R', LWORK >= max(1,M). -* For optimum performance LWORK >= N*NB if SIDE = 'L', and -* LWORK >= M*NB if SIDE = 'R', where NB is the optimal -* blocksize. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* * ===================================================================== * * .. Local Scalars ..