--- rpl/lapack/lapack/dormbr.f 2010/12/21 13:53:35 1.7 +++ rpl/lapack/lapack/dormbr.f 2011/11/21 20:43:00 1.8 @@ -1,10 +1,204 @@ +*> \brief \b DORMBR +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DORMBR + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, +* LDC, WORK, LWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER SIDE, TRANS, VECT +* INTEGER INFO, K, LDA, LDC, LWORK, M, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C +*> with +*> SIDE = 'L' SIDE = 'R' +*> TRANS = 'N': Q * C C * Q +*> TRANS = 'T': Q**T * C C * Q**T +*> +*> If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C +*> with +*> SIDE = 'L' SIDE = 'R' +*> TRANS = 'N': P * C C * P +*> TRANS = 'T': P**T * C C * P**T +*> +*> Here Q and P**T are the orthogonal matrices determined by DGEBRD when +*> reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and +*> P**T are defined as products of elementary reflectors H(i) and G(i) +*> respectively. +*> +*> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the +*> order of the orthogonal matrix Q or P**T that is applied. +*> +*> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: +*> if nq >= k, Q = H(1) H(2) . . . H(k); +*> if nq < k, Q = H(1) H(2) . . . H(nq-1). +*> +*> If VECT = 'P', A is assumed to have been a K-by-NQ matrix: +*> if k < nq, P = G(1) G(2) . . . G(k); +*> if k >= nq, P = G(1) G(2) . . . G(nq-1). +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] VECT +*> \verbatim +*> VECT is CHARACTER*1 +*> = 'Q': apply Q or Q**T; +*> = 'P': apply P or P**T. +*> \endverbatim +*> +*> \param[in] SIDE +*> \verbatim +*> SIDE is CHARACTER*1 +*> = 'L': apply Q, Q**T, P or P**T from the Left; +*> = 'R': apply Q, Q**T, P or P**T from the Right. +*> \endverbatim +*> +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> = 'N': No transpose, apply Q or P; +*> = 'T': Transpose, apply Q**T or P**T. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix C. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix C. N >= 0. +*> \endverbatim +*> +*> \param[in] K +*> \verbatim +*> K is INTEGER +*> If VECT = 'Q', the number of columns in the original +*> matrix reduced by DGEBRD. +*> If VECT = 'P', the number of rows in the original +*> matrix reduced by DGEBRD. +*> K >= 0. +*> \endverbatim +*> +*> \param[in] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension +*> (LDA,min(nq,K)) if VECT = 'Q' +*> (LDA,nq) if VECT = 'P' +*> The vectors which define the elementary reflectors H(i) and +*> G(i), whose products determine the matrices Q and P, as +*> returned by DGEBRD. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. +*> If VECT = 'Q', LDA >= max(1,nq); +*> if VECT = 'P', LDA >= max(1,min(nq,K)). +*> \endverbatim +*> +*> \param[in] TAU +*> \verbatim +*> TAU is DOUBLE PRECISION array, dimension (min(nq,K)) +*> TAU(i) must contain the scalar factor of the elementary +*> reflector H(i) or G(i) which determines Q or P, as returned +*> by DGEBRD in the array argument TAUQ or TAUP. +*> \endverbatim +*> +*> \param[in,out] C +*> \verbatim +*> C is DOUBLE PRECISION array, dimension (LDC,N) +*> On entry, the M-by-N matrix C. +*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q +*> or P*C or P**T*C or C*P or C*P**T. +*> \endverbatim +*> +*> \param[in] LDC +*> \verbatim +*> LDC is INTEGER +*> The leading dimension of the array C. LDC >= max(1,M). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. +*> If SIDE = 'L', LWORK >= max(1,N); +*> if SIDE = 'R', LWORK >= max(1,M). +*> For optimum performance LWORK >= N*NB if SIDE = 'L', and +*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal +*> blocksize. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleOTHERcomputational +* +* ===================================================================== SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, $ LDC, WORK, LWORK, INFO ) * -* -- LAPACK routine (version 3.2) -- +* -- LAPACK computational routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 +* November 2011 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS, VECT @@ -14,110 +208,6 @@ DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) * .. * -* Purpose -* ======= -* -* If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C -* with -* SIDE = 'L' SIDE = 'R' -* TRANS = 'N': Q * C C * Q -* TRANS = 'T': Q**T * C C * Q**T -* -* If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C -* with -* SIDE = 'L' SIDE = 'R' -* TRANS = 'N': P * C C * P -* TRANS = 'T': P**T * C C * P**T -* -* Here Q and P**T are the orthogonal matrices determined by DGEBRD when -* reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and -* P**T are defined as products of elementary reflectors H(i) and G(i) -* respectively. -* -* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the -* order of the orthogonal matrix Q or P**T that is applied. -* -* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: -* if nq >= k, Q = H(1) H(2) . . . H(k); -* if nq < k, Q = H(1) H(2) . . . H(nq-1). -* -* If VECT = 'P', A is assumed to have been a K-by-NQ matrix: -* if k < nq, P = G(1) G(2) . . . G(k); -* if k >= nq, P = G(1) G(2) . . . G(nq-1). -* -* Arguments -* ========= -* -* VECT (input) CHARACTER*1 -* = 'Q': apply Q or Q**T; -* = 'P': apply P or P**T. -* -* SIDE (input) CHARACTER*1 -* = 'L': apply Q, Q**T, P or P**T from the Left; -* = 'R': apply Q, Q**T, P or P**T from the Right. -* -* TRANS (input) CHARACTER*1 -* = 'N': No transpose, apply Q or P; -* = 'T': Transpose, apply Q**T or P**T. -* -* M (input) INTEGER -* The number of rows of the matrix C. M >= 0. -* -* N (input) INTEGER -* The number of columns of the matrix C. N >= 0. -* -* K (input) INTEGER -* If VECT = 'Q', the number of columns in the original -* matrix reduced by DGEBRD. -* If VECT = 'P', the number of rows in the original -* matrix reduced by DGEBRD. -* K >= 0. -* -* A (input) DOUBLE PRECISION array, dimension -* (LDA,min(nq,K)) if VECT = 'Q' -* (LDA,nq) if VECT = 'P' -* The vectors which define the elementary reflectors H(i) and -* G(i), whose products determine the matrices Q and P, as -* returned by DGEBRD. -* -* LDA (input) INTEGER -* The leading dimension of the array A. -* If VECT = 'Q', LDA >= max(1,nq); -* if VECT = 'P', LDA >= max(1,min(nq,K)). -* -* TAU (input) DOUBLE PRECISION array, dimension (min(nq,K)) -* TAU(i) must contain the scalar factor of the elementary -* reflector H(i) or G(i) which determines Q or P, as returned -* by DGEBRD in the array argument TAUQ or TAUP. -* -* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) -* On entry, the M-by-N matrix C. -* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q -* or P*C or P**T*C or C*P or C*P**T. -* -* LDC (input) INTEGER -* The leading dimension of the array C. LDC >= max(1,M). -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. -* If SIDE = 'L', LWORK >= max(1,N); -* if SIDE = 'R', LWORK >= max(1,M). -* For optimum performance LWORK >= N*NB if SIDE = 'L', and -* LWORK >= M*NB if SIDE = 'R', where NB is the optimal -* blocksize. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* * ===================================================================== * * .. Local Scalars ..