File:  [local] / rpl / lapack / lapack / dorm22.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:02 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DORM22 multiplies a general matrix by a banded orthogonal matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DORM22 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorm22.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorm22.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorm22.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *     SUBROUTINE DORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
   22: *    $                   WORK, LWORK, INFO )
   23: *
   24: *     .. Scalar Arguments ..
   25: *     CHARACTER          SIDE, TRANS
   26: *     INTEGER            M, N, N1, N2, LDQ, LDC, LWORK, INFO
   27: *     ..
   28: *     .. Array Arguments ..
   29: *     DOUBLE PRECISION   Q( LDQ, * ), C( LDC, * ), WORK( * )
   30: *     ..
   31: *
   32: *> \par Purpose
   33: *  ============
   34: *>
   35: *> \verbatim
   36: *>
   37: *>
   38: *>  DORM22 overwrites the general real M-by-N matrix C with
   39: *>
   40: *>                  SIDE = 'L'     SIDE = 'R'
   41: *>  TRANS = 'N':      Q * C          C * Q
   42: *>  TRANS = 'T':      Q**T * C       C * Q**T
   43: *>
   44: *>  where Q is a real orthogonal matrix of order NQ, with NQ = M if
   45: *>  SIDE = 'L' and NQ = N if SIDE = 'R'.
   46: *>  The orthogonal matrix Q processes a 2-by-2 block structure
   47: *>
   48: *>         [  Q11  Q12  ]
   49: *>     Q = [            ]
   50: *>         [  Q21  Q22  ],
   51: *>
   52: *>  where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
   53: *>  N2-by-N2 upper triangular matrix.
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] SIDE
   60: *> \verbatim
   61: *>          SIDE is CHARACTER*1
   62: *>          = 'L': apply Q or Q**T from the Left;
   63: *>          = 'R': apply Q or Q**T from the Right.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] TRANS
   67: *> \verbatim
   68: *>          TRANS is CHARACTER*1
   69: *>          = 'N':  apply Q (No transpose);
   70: *>          = 'C':  apply Q**T (Conjugate transpose).
   71: *> \endverbatim
   72: *>
   73: *> \param[in] M
   74: *> \verbatim
   75: *>          M is INTEGER
   76: *>          The number of rows of the matrix C. M >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The number of columns of the matrix C. N >= 0.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] N1
   86: *> \param[in] N2
   87: *> \verbatim
   88: *>          N1 is INTEGER
   89: *>          N2 is INTEGER
   90: *>          The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
   91: *>          The following requirement must be satisfied:
   92: *>          N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] Q
   96: *> \verbatim
   97: *>          Q is DOUBLE PRECISION array, dimension
   98: *>                                       (LDQ,M) if SIDE = 'L'
   99: *>                                       (LDQ,N) if SIDE = 'R'
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDQ
  103: *> \verbatim
  104: *>          LDQ is INTEGER
  105: *>          The leading dimension of the array Q.
  106: *>          LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] C
  110: *> \verbatim
  111: *>          C is DOUBLE PRECISION array, dimension (LDC,N)
  112: *>          On entry, the M-by-N matrix C.
  113: *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDC
  117: *> \verbatim
  118: *>          LDC is INTEGER
  119: *>          The leading dimension of the array C. LDC >= max(1,M).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] WORK
  123: *> \verbatim
  124: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  125: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] LWORK
  129: *> \verbatim
  130: *>          LWORK is INTEGER
  131: *>          The dimension of the array WORK.
  132: *>          If SIDE = 'L', LWORK >= max(1,N);
  133: *>          if SIDE = 'R', LWORK >= max(1,M).
  134: *>          For optimum performance LWORK >= M*N.
  135: *>
  136: *>          If LWORK = -1, then a workspace query is assumed; the routine
  137: *>          only calculates the optimal size of the WORK array, returns
  138: *>          this value as the first entry of the WORK array, and no error
  139: *>          message related to LWORK is issued by XERBLA.
  140: *> \endverbatim
  141: *>
  142: *> \param[out] INFO
  143: *> \verbatim
  144: *>          INFO is INTEGER
  145: *>          = 0:  successful exit
  146: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  147: *> \endverbatim
  148: *
  149: *
  150: *  Authors:
  151: *  ========
  152: *
  153: *> \author Univ. of Tennessee
  154: *> \author Univ. of California Berkeley
  155: *> \author Univ. of Colorado Denver
  156: *> \author NAG Ltd.
  157: *
  158: *> \ingroup complexOTHERcomputational
  159: *
  160: *  =====================================================================
  161:       SUBROUTINE DORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
  162:      $                   WORK, LWORK, INFO )
  163: *
  164: *  -- LAPACK computational routine --
  165: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  166: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  167: *
  168:       IMPLICIT NONE
  169: *
  170: *     .. Scalar Arguments ..
  171:       CHARACTER          SIDE, TRANS
  172:       INTEGER            M, N, N1, N2, LDQ, LDC, LWORK, INFO
  173: *     ..
  174: *     .. Array Arguments ..
  175:       DOUBLE PRECISION   Q( LDQ, * ), C( LDC, * ), WORK( * )
  176: *     ..
  177: *
  178: *  =====================================================================
  179: *
  180: *     .. Parameters ..
  181:       DOUBLE PRECISION   ONE
  182:       PARAMETER          ( ONE = 1.0D+0 )
  183: *
  184: *     .. Local Scalars ..
  185:       LOGICAL            LEFT, LQUERY, NOTRAN
  186:       INTEGER            I, LDWORK, LEN, LWKOPT, NB, NQ, NW
  187: *     ..
  188: *     .. External Functions ..
  189:       LOGICAL            LSAME
  190:       EXTERNAL           LSAME
  191: *     ..
  192: *     .. External Subroutines ..
  193:       EXTERNAL           DGEMM, DLACPY, DTRMM, XERBLA
  194: *     ..
  195: *     .. Intrinsic Functions ..
  196:       INTRINSIC          DBLE, MAX, MIN
  197: *     ..
  198: *     .. Executable Statements ..
  199: *
  200: *     Test the input arguments
  201: *
  202:       INFO = 0
  203:       LEFT = LSAME( SIDE, 'L' )
  204:       NOTRAN = LSAME( TRANS, 'N' )
  205:       LQUERY = ( LWORK.EQ.-1 )
  206: *
  207: *     NQ is the order of Q;
  208: *     NW is the minimum dimension of WORK.
  209: *
  210:       IF( LEFT ) THEN
  211:          NQ = M
  212:       ELSE
  213:          NQ = N
  214:       END IF
  215:       NW = NQ
  216:       IF( N1.EQ.0 .OR. N2.EQ.0 ) NW = 1
  217:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  218:          INFO = -1
  219:       ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
  220:      $          THEN
  221:          INFO = -2
  222:       ELSE IF( M.LT.0 ) THEN
  223:          INFO = -3
  224:       ELSE IF( N.LT.0 ) THEN
  225:          INFO = -4
  226:       ELSE IF( N1.LT.0 .OR. N1+N2.NE.NQ ) THEN
  227:          INFO = -5
  228:       ELSE IF( N2.LT.0 ) THEN
  229:          INFO = -6
  230:       ELSE IF( LDQ.LT.MAX( 1, NQ ) ) THEN
  231:          INFO = -8
  232:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  233:          INFO = -10
  234:       ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  235:          INFO = -12
  236:       END IF
  237: *
  238:       IF( INFO.EQ.0 ) THEN
  239:          LWKOPT = M*N
  240:          WORK( 1 ) = DBLE( LWKOPT )
  241:       END IF
  242: *
  243:       IF( INFO.NE.0 ) THEN
  244:          CALL XERBLA( 'DORM22', -INFO )
  245:          RETURN
  246:       ELSE IF( LQUERY ) THEN
  247:          RETURN
  248:       END IF
  249: *
  250: *     Quick return if possible
  251: *
  252:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  253:          WORK( 1 ) = 1
  254:          RETURN
  255:       END IF
  256: *
  257: *     Degenerate cases (N1 = 0 or N2 = 0) are handled using DTRMM.
  258: *
  259:       IF( N1.EQ.0 ) THEN
  260:          CALL DTRMM( SIDE, 'Upper', TRANS, 'Non-Unit', M, N, ONE,
  261:      $               Q, LDQ, C, LDC )
  262:          WORK( 1 ) = ONE
  263:          RETURN
  264:       ELSE IF( N2.EQ.0 ) THEN
  265:          CALL DTRMM( SIDE, 'Lower', TRANS, 'Non-Unit', M, N, ONE,
  266:      $               Q, LDQ, C, LDC )
  267:          WORK( 1 ) = ONE
  268:          RETURN
  269:       END IF
  270: *
  271: *     Compute the largest chunk size available from the workspace.
  272: *
  273:       NB = MAX( 1, MIN( LWORK, LWKOPT ) / NQ )
  274: *
  275:       IF( LEFT ) THEN
  276:          IF( NOTRAN ) THEN
  277:             DO I = 1, N, NB
  278:                LEN = MIN( NB, N-I+1 )
  279:                LDWORK = M
  280: *
  281: *              Multiply bottom part of C by Q12.
  282: *
  283:                CALL DLACPY( 'All', N1, LEN, C( N2+1, I ), LDC, WORK,
  284:      $                      LDWORK )
  285:                CALL DTRMM( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
  286:      $                     N1, LEN, ONE, Q( 1, N2+1 ), LDQ, WORK,
  287:      $                     LDWORK )
  288: *
  289: *              Multiply top part of C by Q11.
  290: *
  291:                CALL DGEMM( 'No Transpose', 'No Transpose', N1, LEN, N2,
  292:      $                     ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  293:      $                     LDWORK )
  294: *
  295: *              Multiply top part of C by Q21.
  296: *
  297:                CALL DLACPY( 'All', N2, LEN, C( 1, I ), LDC,
  298:      $                      WORK( N1+1 ), LDWORK )
  299:                CALL DTRMM( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
  300:      $                     N2, LEN, ONE, Q( N1+1, 1 ), LDQ,
  301:      $                     WORK( N1+1 ), LDWORK )
  302: *
  303: *              Multiply bottom part of C by Q22.
  304: *
  305:                CALL DGEMM( 'No Transpose', 'No Transpose', N2, LEN, N1,
  306:      $                     ONE, Q( N1+1, N2+1 ), LDQ, C( N2+1, I ), LDC,
  307:      $                     ONE, WORK( N1+1 ), LDWORK )
  308: *
  309: *              Copy everything back.
  310: *
  311:                CALL DLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  312:      $                      LDC )
  313:             END DO
  314:          ELSE
  315:             DO I = 1, N, NB
  316:                LEN = MIN( NB, N-I+1 )
  317:                LDWORK = M
  318: *
  319: *              Multiply bottom part of C by Q21**T.
  320: *
  321:                CALL DLACPY( 'All', N2, LEN, C( N1+1, I ), LDC, WORK,
  322:      $                      LDWORK )
  323:                CALL DTRMM( 'Left', 'Upper', 'Transpose', 'Non-Unit',
  324:      $                     N2, LEN, ONE, Q( N1+1, 1 ), LDQ, WORK,
  325:      $                     LDWORK )
  326: *
  327: *              Multiply top part of C by Q11**T.
  328: *
  329:                CALL DGEMM( 'Transpose', 'No Transpose', N2, LEN, N1,
  330:      $                     ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  331:      $                     LDWORK )
  332: *
  333: *              Multiply top part of C by Q12**T.
  334: *
  335:                CALL DLACPY( 'All', N1, LEN, C( 1, I ), LDC,
  336:      $                      WORK( N2+1 ), LDWORK )
  337:                CALL DTRMM( 'Left', 'Lower', 'Transpose', 'Non-Unit',
  338:      $                     N1, LEN, ONE, Q( 1, N2+1 ), LDQ,
  339:      $                     WORK( N2+1 ), LDWORK )
  340: *
  341: *              Multiply bottom part of C by Q22**T.
  342: *
  343:                CALL DGEMM( 'Transpose', 'No Transpose', N1, LEN, N2,
  344:      $                     ONE, Q( N1+1, N2+1 ), LDQ, C( N1+1, I ), LDC,
  345:      $                     ONE, WORK( N2+1 ), LDWORK )
  346: *
  347: *              Copy everything back.
  348: *
  349:                CALL DLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  350:      $                      LDC )
  351:             END DO
  352:          END IF
  353:       ELSE
  354:          IF( NOTRAN ) THEN
  355:             DO I = 1, M, NB
  356:                LEN = MIN( NB, M-I+1 )
  357:                LDWORK = LEN
  358: *
  359: *              Multiply right part of C by Q21.
  360: *
  361:                CALL DLACPY( 'All', LEN, N2, C( I, N1+1 ), LDC, WORK,
  362:      $                      LDWORK )
  363:                CALL DTRMM( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
  364:      $                     LEN, N2, ONE, Q( N1+1, 1 ), LDQ, WORK,
  365:      $                     LDWORK )
  366: *
  367: *              Multiply left part of C by Q11.
  368: *
  369:                CALL DGEMM( 'No Transpose', 'No Transpose', LEN, N2, N1,
  370:      $                     ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  371:      $                     LDWORK )
  372: *
  373: *              Multiply left part of C by Q12.
  374: *
  375:                CALL DLACPY( 'All', LEN, N1, C( I, 1 ), LDC,
  376:      $                      WORK( 1 + N2*LDWORK ), LDWORK )
  377:                CALL DTRMM( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
  378:      $                     LEN, N1, ONE, Q( 1, N2+1 ), LDQ,
  379:      $                     WORK( 1 + N2*LDWORK ), LDWORK )
  380: *
  381: *              Multiply right part of C by Q22.
  382: *
  383:                CALL DGEMM( 'No Transpose', 'No Transpose', LEN, N1, N2,
  384:      $                     ONE, C( I, N1+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  385:      $                     ONE, WORK( 1 + N2*LDWORK ), LDWORK )
  386: *
  387: *              Copy everything back.
  388: *
  389:                CALL DLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  390:      $                      LDC )
  391:             END DO
  392:          ELSE
  393:             DO I = 1, M, NB
  394:                LEN = MIN( NB, M-I+1 )
  395:                LDWORK = LEN
  396: *
  397: *              Multiply right part of C by Q12**T.
  398: *
  399:                CALL DLACPY( 'All', LEN, N1, C( I, N2+1 ), LDC, WORK,
  400:      $                      LDWORK )
  401:                CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Non-Unit',
  402:      $                     LEN, N1, ONE, Q( 1, N2+1 ), LDQ, WORK,
  403:      $                     LDWORK )
  404: *
  405: *              Multiply left part of C by Q11**T.
  406: *
  407:                CALL DGEMM( 'No Transpose', 'Transpose', LEN, N1, N2,
  408:      $                     ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  409:      $                     LDWORK )
  410: *
  411: *              Multiply left part of C by Q21**T.
  412: *
  413:                CALL DLACPY( 'All', LEN, N2, C( I, 1 ), LDC,
  414:      $                      WORK( 1 + N1*LDWORK ), LDWORK )
  415:                CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Non-Unit',
  416:      $                     LEN, N2, ONE, Q( N1+1, 1 ), LDQ,
  417:      $                     WORK( 1 + N1*LDWORK ), LDWORK )
  418: *
  419: *              Multiply right part of C by Q22**T.
  420: *
  421:                CALL DGEMM( 'No Transpose', 'Transpose', LEN, N2, N1,
  422:      $                     ONE, C( I, N2+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  423:      $                     ONE, WORK( 1 + N1*LDWORK ), LDWORK )
  424: *
  425: *              Copy everything back.
  426: *
  427:                CALL DLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  428:      $                      LDC )
  429:             END DO
  430:          END IF
  431:       END IF
  432: *
  433:       WORK( 1 ) = DBLE( LWKOPT )
  434:       RETURN
  435: *
  436: *     End of DORM22
  437: *
  438:       END

CVSweb interface <joel.bertrand@systella.fr>