File:  [local] / rpl / lapack / lapack / dorm22.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Thu Nov 26 11:44:19 2015 UTC (8 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, HEAD
Mise à jour de Lapack (3.6.0) et du numéro de version du RPL/2.

    1: *> \brief \b DORM22 multiplies a general matrix by a banded orthogonal matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DORM22 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorm22.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorm22.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorm22.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *     SUBROUTINE DORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
   22: *    $                   WORK, LWORK, INFO )
   23: *
   24: *     .. Scalar Arguments ..
   25: *     CHARACTER          SIDE, TRANS
   26: *     INTEGER            M, N, N1, N2, LDQ, LDC, LWORK, INFO
   27: *     ..
   28: *     .. Array Arguments ..
   29: *     DOUBLE PRECISION   Q( LDQ, * ), C( LDC, * ), WORK( * )
   30: *     ..
   31: *
   32: *> \par Purpose
   33: *  ============
   34: *>
   35: *> \verbatim
   36: *>
   37: *>
   38: *>  DORM22 overwrites the general real M-by-N matrix C with
   39: *>
   40: *>                  SIDE = 'L'     SIDE = 'R'
   41: *>  TRANS = 'N':      Q * C          C * Q
   42: *>  TRANS = 'T':      Q**T * C       C * Q**T
   43: *>
   44: *>  where Q is a real orthogonal matrix of order NQ, with NQ = M if
   45: *>  SIDE = 'L' and NQ = N if SIDE = 'R'.
   46: *>  The orthogonal matrix Q processes a 2-by-2 block structure
   47: *>
   48: *>         [  Q11  Q12  ]
   49: *>     Q = [            ]
   50: *>         [  Q21  Q22  ],
   51: *>
   52: *>  where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
   53: *>  N2-by-N2 upper triangular matrix.
   54: *> \endverbatim
   55: *
   56: *  Arguments
   57: *  =========
   58: *
   59: *> \param[in] SIDE
   60: *> \verbatim
   61: *>          SIDE is CHARACTER*1
   62: *>          = 'L': apply Q or Q**T from the Left;
   63: *>          = 'R': apply Q or Q**T from the Right.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] TRANS
   67: *> \verbatim
   68: *>          TRANS is CHARACTER*1
   69: *>          = 'N':  apply Q (No transpose);
   70: *>          = 'C':  apply Q**T (Conjugate transpose).
   71: *> \endverbatim
   72: *>
   73: *> \param[in] M
   74: *> \verbatim
   75: *>          M is INTEGER
   76: *>          The number of rows of the matrix C. M >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The number of columns of the matrix C. N >= 0.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] N1
   86: *> \param[in] N2
   87: *> \verbatim
   88: *>          N1 is INTEGER
   89: *>          N2 is INTEGER
   90: *>          The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
   91: *>          The following requirement must be satisfied:
   92: *>          N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] Q
   96: *> \verbatim
   97: *>          Q is DOUBLE PRECISION array, dimension
   98: *>                                       (LDQ,M) if SIDE = 'L'
   99: *>                                       (LDQ,N) if SIDE = 'R'
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDQ
  103: *> \verbatim
  104: *>          LDQ is INTEGER
  105: *>          The leading dimension of the array Q.
  106: *>          LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] C
  110: *> \verbatim
  111: *>          C is DOUBLE PRECISION array, dimension (LDC,N)
  112: *>          On entry, the M-by-N matrix C.
  113: *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDC
  117: *> \verbatim
  118: *>          LDC is INTEGER
  119: *>          The leading dimension of the array C. LDC >= max(1,M).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] WORK
  123: *> \verbatim
  124: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  125: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] LWORK
  129: *> \verbatim
  130: *>          LWORK is INTEGER
  131: *>          The dimension of the array WORK.
  132: *>          If SIDE = 'L', LWORK >= max(1,N);
  133: *>          if SIDE = 'R', LWORK >= max(1,M).
  134: *>          For optimum performance LWORK >= M*N.
  135: *>
  136: *>          If LWORK = -1, then a workspace query is assumed; the routine
  137: *>          only calculates the optimal size of the WORK array, returns
  138: *>          this value as the first entry of the WORK array, and no error
  139: *>          message related to LWORK is issued by XERBLA.
  140: *> \endverbatim
  141: *>
  142: *> \param[out] INFO
  143: *> \verbatim
  144: *>          INFO is INTEGER
  145: *>          = 0:  successful exit
  146: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  147: *> \endverbatim
  148: *
  149: *
  150: *  Authors:
  151: *  ========
  152: *
  153: *> \author Univ. of Tennessee
  154: *> \author Univ. of California Berkeley
  155: *> \author Univ. of Colorado Denver
  156: *> \author NAG Ltd.
  157: *
  158: *> \date January 2015
  159: *
  160: *> \ingroup complexOTHERcomputational
  161: *
  162: *  =====================================================================
  163:       SUBROUTINE DORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
  164:      $                   WORK, LWORK, INFO )
  165: *
  166: *  -- LAPACK computational routine (version 3.6.0) --
  167: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  168: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  169: *     January 2015
  170: *
  171:       IMPLICIT NONE
  172: *
  173: *     .. Scalar Arguments ..
  174:       CHARACTER          SIDE, TRANS
  175:       INTEGER            M, N, N1, N2, LDQ, LDC, LWORK, INFO
  176: *     ..
  177: *     .. Array Arguments ..
  178:       DOUBLE PRECISION   Q( LDQ, * ), C( LDC, * ), WORK( * )
  179: *     ..
  180: *
  181: *  =====================================================================
  182: *
  183: *     .. Parameters ..
  184:       DOUBLE PRECISION   ONE
  185:       PARAMETER          ( ONE = 1.0D+0 )
  186: *
  187: *     .. Local Scalars ..
  188:       LOGICAL            LEFT, LQUERY, NOTRAN
  189:       INTEGER            I, LDWORK, LEN, LWKOPT, NB, NQ, NW
  190: *     ..
  191: *     .. External Functions ..
  192:       LOGICAL            LSAME
  193:       EXTERNAL           LSAME
  194: *     ..
  195: *     .. External Subroutines ..
  196:       EXTERNAL           DGEMM, DLACPY, DTRMM, XERBLA
  197: *     ..
  198: *     .. Intrinsic Functions ..
  199:       INTRINSIC          DBLE, MAX, MIN
  200: *     ..
  201: *     .. Executable Statements ..
  202: *
  203: *     Test the input arguments
  204: *
  205:       INFO = 0
  206:       LEFT = LSAME( SIDE, 'L' )
  207:       NOTRAN = LSAME( TRANS, 'N' )
  208:       LQUERY = ( LWORK.EQ.-1 )
  209: *
  210: *     NQ is the order of Q;
  211: *     NW is the minimum dimension of WORK.
  212: *
  213:       IF( LEFT ) THEN
  214:          NQ = M
  215:       ELSE
  216:          NQ = N
  217:       END IF
  218:       NW = NQ
  219:       IF( N1.EQ.0 .OR. N2.EQ.0 ) NW = 1
  220:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  221:          INFO = -1
  222:       ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
  223:      $          THEN
  224:          INFO = -2
  225:       ELSE IF( M.LT.0 ) THEN
  226:          INFO = -3
  227:       ELSE IF( N.LT.0 ) THEN
  228:          INFO = -4
  229:       ELSE IF( N1.LT.0 .OR. N1+N2.NE.NQ ) THEN
  230:          INFO = -5
  231:       ELSE IF( N2.LT.0 ) THEN
  232:          INFO = -6
  233:       ELSE IF( LDQ.LT.MAX( 1, NQ ) ) THEN
  234:          INFO = -8
  235:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  236:          INFO = -10
  237:       ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  238:          INFO = -12
  239:       END IF
  240: *
  241:       IF( INFO.EQ.0 ) THEN
  242:          LWKOPT = M*N
  243:          WORK( 1 ) = DBLE( LWKOPT )
  244:       END IF
  245: *
  246:       IF( INFO.NE.0 ) THEN
  247:          CALL XERBLA( 'DORM22', -INFO )
  248:          RETURN
  249:       ELSE IF( LQUERY ) THEN
  250:          RETURN
  251:       END IF
  252: *
  253: *     Quick return if possible
  254: *
  255:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  256:          WORK( 1 ) = 1
  257:          RETURN
  258:       END IF
  259: *
  260: *     Degenerate cases (N1 = 0 or N2 = 0) are handled using DTRMM.
  261: *
  262:       IF( N1.EQ.0 ) THEN
  263:          CALL DTRMM( SIDE, 'Upper', TRANS, 'Non-Unit', M, N, ONE,
  264:      $               Q, LDQ, C, LDC )
  265:          WORK( 1 ) = ONE
  266:          RETURN
  267:       ELSE IF( N2.EQ.0 ) THEN
  268:          CALL DTRMM( SIDE, 'Lower', TRANS, 'Non-Unit', M, N, ONE,
  269:      $               Q, LDQ, C, LDC )
  270:          WORK( 1 ) = ONE
  271:          RETURN
  272:       END IF
  273: *
  274: *     Compute the largest chunk size available from the workspace.
  275: *
  276:       NB = MAX( 1, MIN( LWORK, LWKOPT ) / NQ )
  277: *
  278:       IF( LEFT ) THEN
  279:          IF( NOTRAN ) THEN
  280:             DO I = 1, N, NB
  281:                LEN = MIN( NB, N-I+1 )
  282:                LDWORK = M
  283: *
  284: *              Multiply bottom part of C by Q12.
  285: *
  286:                CALL DLACPY( 'All', N1, LEN, C( N2+1, I ), LDC, WORK,
  287:      $                      LDWORK )
  288:                CALL DTRMM( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
  289:      $                     N1, LEN, ONE, Q( 1, N2+1 ), LDQ, WORK,
  290:      $                     LDWORK )
  291: *
  292: *              Multiply top part of C by Q11.
  293: *
  294:                CALL DGEMM( 'No Transpose', 'No Transpose', N1, LEN, N2,
  295:      $                     ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  296:      $                     LDWORK )
  297: *
  298: *              Multiply top part of C by Q21.
  299: *
  300:                CALL DLACPY( 'All', N2, LEN, C( 1, I ), LDC,
  301:      $                      WORK( N1+1 ), LDWORK )
  302:                CALL DTRMM( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
  303:      $                     N2, LEN, ONE, Q( N1+1, 1 ), LDQ,
  304:      $                     WORK( N1+1 ), LDWORK )
  305: *
  306: *              Multiply bottom part of C by Q22.
  307: *
  308:                CALL DGEMM( 'No Transpose', 'No Transpose', N2, LEN, N1,
  309:      $                     ONE, Q( N1+1, N2+1 ), LDQ, C( N2+1, I ), LDC,
  310:      $                     ONE, WORK( N1+1 ), LDWORK )
  311: *
  312: *              Copy everything back.
  313: *
  314:                CALL DLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  315:      $                      LDC )
  316:             END DO
  317:          ELSE
  318:             DO I = 1, N, NB
  319:                LEN = MIN( NB, N-I+1 )
  320:                LDWORK = M
  321: *
  322: *              Multiply bottom part of C by Q21**T.
  323: *
  324:                CALL DLACPY( 'All', N2, LEN, C( N1+1, I ), LDC, WORK,
  325:      $                      LDWORK )
  326:                CALL DTRMM( 'Left', 'Upper', 'Transpose', 'Non-Unit',
  327:      $                     N2, LEN, ONE, Q( N1+1, 1 ), LDQ, WORK,
  328:      $                     LDWORK )
  329: *
  330: *              Multiply top part of C by Q11**T.
  331: *
  332:                CALL DGEMM( 'Transpose', 'No Transpose', N2, LEN, N1,
  333:      $                     ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  334:      $                     LDWORK )
  335: *
  336: *              Multiply top part of C by Q12**T.
  337: *
  338:                CALL DLACPY( 'All', N1, LEN, C( 1, I ), LDC,
  339:      $                      WORK( N2+1 ), LDWORK )
  340:                CALL DTRMM( 'Left', 'Lower', 'Transpose', 'Non-Unit',
  341:      $                     N1, LEN, ONE, Q( 1, N2+1 ), LDQ,
  342:      $                     WORK( N2+1 ), LDWORK )
  343: *
  344: *              Multiply bottom part of C by Q22**T.
  345: *
  346:                CALL DGEMM( 'Transpose', 'No Transpose', N1, LEN, N2,
  347:      $                     ONE, Q( N1+1, N2+1 ), LDQ, C( N1+1, I ), LDC,
  348:      $                     ONE, WORK( N2+1 ), LDWORK )
  349: *
  350: *              Copy everything back.
  351: *
  352:                CALL DLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  353:      $                      LDC )
  354:             END DO
  355:          END IF
  356:       ELSE
  357:          IF( NOTRAN ) THEN
  358:             DO I = 1, M, NB
  359:                LEN = MIN( NB, M-I+1 )
  360:                LDWORK = LEN
  361: *
  362: *              Multiply right part of C by Q21.
  363: *
  364:                CALL DLACPY( 'All', LEN, N2, C( I, N1+1 ), LDC, WORK,
  365:      $                      LDWORK )
  366:                CALL DTRMM( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
  367:      $                     LEN, N2, ONE, Q( N1+1, 1 ), LDQ, WORK,
  368:      $                     LDWORK )
  369: *
  370: *              Multiply left part of C by Q11.
  371: *
  372:                CALL DGEMM( 'No Transpose', 'No Transpose', LEN, N2, N1,
  373:      $                     ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  374:      $                     LDWORK )
  375: *
  376: *              Multiply left part of C by Q12.
  377: *
  378:                CALL DLACPY( 'All', LEN, N1, C( I, 1 ), LDC,
  379:      $                      WORK( 1 + N2*LDWORK ), LDWORK )
  380:                CALL DTRMM( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
  381:      $                     LEN, N1, ONE, Q( 1, N2+1 ), LDQ,
  382:      $                     WORK( 1 + N2*LDWORK ), LDWORK )
  383: *
  384: *              Multiply right part of C by Q22.
  385: *
  386:                CALL DGEMM( 'No Transpose', 'No Transpose', LEN, N1, N2,
  387:      $                     ONE, C( I, N1+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  388:      $                     ONE, WORK( 1 + N2*LDWORK ), LDWORK )
  389: *
  390: *              Copy everything back.
  391: *
  392:                CALL DLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  393:      $                      LDC )
  394:             END DO
  395:          ELSE
  396:             DO I = 1, M, NB
  397:                LEN = MIN( NB, M-I+1 )
  398:                LDWORK = LEN
  399: *
  400: *              Multiply right part of C by Q12**T.
  401: *
  402:                CALL DLACPY( 'All', LEN, N1, C( I, N2+1 ), LDC, WORK,
  403:      $                      LDWORK )
  404:                CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Non-Unit',
  405:      $                     LEN, N1, ONE, Q( 1, N2+1 ), LDQ, WORK,
  406:      $                     LDWORK )
  407: *
  408: *              Multiply left part of C by Q11**T.
  409: *
  410:                CALL DGEMM( 'No Transpose', 'Transpose', LEN, N1, N2,
  411:      $                     ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  412:      $                     LDWORK )
  413: *
  414: *              Multiply left part of C by Q21**T.
  415: *
  416:                CALL DLACPY( 'All', LEN, N2, C( I, 1 ), LDC,
  417:      $                      WORK( 1 + N1*LDWORK ), LDWORK )
  418:                CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Non-Unit',
  419:      $                     LEN, N2, ONE, Q( N1+1, 1 ), LDQ,
  420:      $                     WORK( 1 + N1*LDWORK ), LDWORK )
  421: *
  422: *              Multiply right part of C by Q22**T.
  423: *
  424:                CALL DGEMM( 'No Transpose', 'Transpose', LEN, N2, N1,
  425:      $                     ONE, C( I, N2+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  426:      $                     ONE, WORK( 1 + N1*LDWORK ), LDWORK )
  427: *
  428: *              Copy everything back.
  429: *
  430:                CALL DLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  431:      $                      LDC )
  432:             END DO
  433:          END IF
  434:       END IF
  435: *
  436:       WORK( 1 ) = DBLE( LWKOPT )
  437:       RETURN
  438: *
  439: *     End of DORM22
  440: *
  441:       END

CVSweb interface <joel.bertrand@systella.fr>