Annotation of rpl/lapack/lapack/dorhr_col.f, revision 1.2

1.1       bertrand    1: *> \brief \b DORHR_COL
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download DORHR_COL + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorhr_col.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorhr_col.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorhr_col.f">
                     15: *> [TXT]</a>
1.2     ! bertrand   16: *> \endhtmlonly
        !            17: *
1.1       bertrand   18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER           INFO, LDA, LDT, M, N, NB
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION  A( LDA, * ), D( * ), T( LDT, * )
                     28: *       ..
                     29: *
                     30: *> \par Purpose:
                     31: *  =============
                     32: *>
                     33: *> \verbatim
                     34: *>
                     35: *>  DORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns
                     36: *>  as input, stored in A, and performs Householder Reconstruction (HR),
                     37: *>  i.e. reconstructs Householder vectors V(i) implicitly representing
                     38: *>  another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
                     39: *>  where S is an N-by-N diagonal matrix with diagonal entries
                     40: *>  equal to +1 or -1. The Householder vectors (columns V(i) of V) are
                     41: *>  stored in A on output, and the diagonal entries of S are stored in D.
                     42: *>  Block reflectors are also returned in T
                     43: *>  (same output format as DGEQRT).
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] M
                     50: *> \verbatim
                     51: *>          M is INTEGER
                     52: *>          The number of rows of the matrix A. M >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] N
                     56: *> \verbatim
                     57: *>          N is INTEGER
                     58: *>          The number of columns of the matrix A. M >= N >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] NB
                     62: *> \verbatim
                     63: *>          NB is INTEGER
                     64: *>          The column block size to be used in the reconstruction
                     65: *>          of Householder column vector blocks in the array A and
                     66: *>          corresponding block reflectors in the array T. NB >= 1.
                     67: *>          (Note that if NB > N, then N is used instead of NB
                     68: *>          as the column block size.)
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in,out] A
                     72: *> \verbatim
                     73: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     74: *>
                     75: *>          On entry:
                     76: *>
                     77: *>             The array A contains an M-by-N orthonormal matrix Q_in,
                     78: *>             i.e the columns of A are orthogonal unit vectors.
                     79: *>
                     80: *>          On exit:
                     81: *>
                     82: *>             The elements below the diagonal of A represent the unit
                     83: *>             lower-trapezoidal matrix V of Householder column vectors
                     84: *>             V(i). The unit diagonal entries of V are not stored
                     85: *>             (same format as the output below the diagonal in A from
                     86: *>             DGEQRT). The matrix T and the matrix V stored on output
                     87: *>             in A implicitly define Q_out.
                     88: *>
                     89: *>             The elements above the diagonal contain the factor U
                     90: *>             of the "modified" LU-decomposition:
                     91: *>                Q_in - ( S ) = V * U
                     92: *>                       ( 0 )
                     93: *>             where 0 is a (M-N)-by-(M-N) zero matrix.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] LDA
                     97: *> \verbatim
                     98: *>          LDA is INTEGER
                     99: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[out] T
                    103: *> \verbatim
                    104: *>          T is DOUBLE PRECISION array,
                    105: *>          dimension (LDT, N)
                    106: *>
                    107: *>          Let NOCB = Number_of_output_col_blocks
                    108: *>                   = CEIL(N/NB)
                    109: *>
                    110: *>          On exit, T(1:NB, 1:N) contains NOCB upper-triangular
                    111: *>          block reflectors used to define Q_out stored in compact
                    112: *>          form as a sequence of upper-triangular NB-by-NB column
                    113: *>          blocks (same format as the output T in DGEQRT).
                    114: *>          The matrix T and the matrix V stored on output in A
                    115: *>          implicitly define Q_out. NOTE: The lower triangles
1.2     ! bertrand  116: *>          below the upper-triangular blocks will be filled with
1.1       bertrand  117: *>          zeros. See Further Details.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] LDT
                    121: *> \verbatim
                    122: *>          LDT is INTEGER
                    123: *>          The leading dimension of the array T.
                    124: *>          LDT >= max(1,min(NB,N)).
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[out] D
                    128: *> \verbatim
                    129: *>          D is DOUBLE PRECISION array, dimension min(M,N).
                    130: *>          The elements can be only plus or minus one.
                    131: *>
                    132: *>          D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
                    133: *>          1 <= i <= min(M,N), and Q_in_i is Q_in after performing
                    134: *>          i-1 steps of “modified” Gaussian elimination.
                    135: *>          See Further Details.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] INFO
                    139: *> \verbatim
                    140: *>          INFO is INTEGER
                    141: *>          = 0:  successful exit
                    142: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    143: *> \endverbatim
                    144: *>
                    145: *> \par Further Details:
                    146: *  =====================
                    147: *>
                    148: *> \verbatim
                    149: *>
                    150: *> The computed M-by-M orthogonal factor Q_out is defined implicitly as
                    151: *> a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in
                    152: *> the compact WY-representation format in the corresponding blocks of
                    153: *> matrices V (stored in A) and T.
                    154: *>
                    155: *> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
                    156: *> matrix A contains the column vectors V(i) in NB-size column
                    157: *> blocks VB(j). For example, VB(1) contains the columns
                    158: *> V(1), V(2), ... V(NB). NOTE: The unit entries on
                    159: *> the diagonal of Y are not stored in A.
                    160: *>
                    161: *> The number of column blocks is
                    162: *>
                    163: *>     NOCB = Number_of_output_col_blocks = CEIL(N/NB)
                    164: *>
                    165: *> where each block is of order NB except for the last block, which
                    166: *> is of order LAST_NB = N - (NOCB-1)*NB.
                    167: *>
                    168: *> For example, if M=6,  N=5 and NB=2, the matrix V is
                    169: *>
                    170: *>
                    171: *>     V = (    VB(1),   VB(2), VB(3) ) =
                    172: *>
                    173: *>       = (   1                      )
                    174: *>         ( v21    1                 )
                    175: *>         ( v31  v32    1            )
                    176: *>         ( v41  v42  v43   1        )
                    177: *>         ( v51  v52  v53  v54    1  )
                    178: *>         ( v61  v62  v63  v54   v65 )
                    179: *>
                    180: *>
                    181: *> For each of the column blocks VB(i), an upper-triangular block
                    182: *> reflector TB(i) is computed. These blocks are stored as
                    183: *> a sequence of upper-triangular column blocks in the NB-by-N
                    184: *> matrix T. The size of each TB(i) block is NB-by-NB, except
                    185: *> for the last block, whose size is LAST_NB-by-LAST_NB.
                    186: *>
                    187: *> For example, if M=6,  N=5 and NB=2, the matrix T is
                    188: *>
                    189: *>     T  = (    TB(1),    TB(2), TB(3) ) =
                    190: *>
                    191: *>        = ( t11  t12  t13  t14   t15  )
                    192: *>          (      t22       t24        )
                    193: *>
                    194: *>
                    195: *> The M-by-M factor Q_out is given as a product of NOCB
                    196: *> orthogonal M-by-M matrices Q_out(i).
                    197: *>
                    198: *>     Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
                    199: *>
                    200: *> where each matrix Q_out(i) is given by the WY-representation
                    201: *> using corresponding blocks from the matrices V and T:
                    202: *>
                    203: *>     Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
                    204: *>
                    205: *> where I is the identity matrix. Here is the formula with matrix
                    206: *> dimensions:
                    207: *>
                    208: *>  Q(i){M-by-M} = I{M-by-M} -
                    209: *>    VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
                    210: *>
                    211: *> where INB = NB, except for the last block NOCB
                    212: *> for which INB=LAST_NB.
                    213: *>
                    214: *> =====
                    215: *> NOTE:
                    216: *> =====
                    217: *>
                    218: *> If Q_in is the result of doing a QR factorization
                    219: *> B = Q_in * R_in, then:
                    220: *>
1.2     ! bertrand  221: *> B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.
1.1       bertrand  222: *>
                    223: *> So if one wants to interpret Q_out as the result
1.2     ! bertrand  224: *> of the QR factorization of B, then the corresponding R_out
        !           225: *> should be equal to R_out = S * R_in, i.e. some rows of R_in
1.1       bertrand  226: *> should be multiplied by -1.
                    227: *>
                    228: *> For the details of the algorithm, see [1].
                    229: *>
                    230: *> [1] "Reconstructing Householder vectors from tall-skinny QR",
                    231: *>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
                    232: *>     E. Solomonik, J. Parallel Distrib. Comput.,
                    233: *>     vol. 85, pp. 3-31, 2015.
                    234: *> \endverbatim
                    235: *>
                    236: *  Authors:
                    237: *  ========
                    238: *
                    239: *> \author Univ. of Tennessee
                    240: *> \author Univ. of California Berkeley
                    241: *> \author Univ. of Colorado Denver
                    242: *> \author NAG Ltd.
                    243: *
                    244: *> \ingroup doubleOTHERcomputational
                    245: *
                    246: *> \par Contributors:
                    247: *  ==================
                    248: *>
                    249: *> \verbatim
                    250: *>
                    251: *> November   2019, Igor Kozachenko,
                    252: *>            Computer Science Division,
                    253: *>            University of California, Berkeley
                    254: *>
                    255: *> \endverbatim
                    256: *
                    257: *  =====================================================================
                    258:       SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
                    259:       IMPLICIT NONE
                    260: *
1.2     ! bertrand  261: *  -- LAPACK computational routine --
1.1       bertrand  262: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    263: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    264: *
                    265: *     .. Scalar Arguments ..
                    266:       INTEGER           INFO, LDA, LDT, M, N, NB
                    267: *     ..
                    268: *     .. Array Arguments ..
                    269:       DOUBLE PRECISION  A( LDA, * ), D( * ), T( LDT, * )
                    270: *     ..
                    271: *
                    272: *  =====================================================================
                    273: *
                    274: *     .. Parameters ..
                    275:       DOUBLE PRECISION   ONE, ZERO
                    276:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    277: *     ..
                    278: *     .. Local Scalars ..
                    279:       INTEGER            I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB,
                    280:      $                   NPLUSONE
                    281: *     ..
                    282: *     .. External Subroutines ..
                    283:       EXTERNAL           DCOPY, DLAORHR_COL_GETRFNP, DSCAL, DTRSM,
                    284:      $                   XERBLA
                    285: *     ..
                    286: *     .. Intrinsic Functions ..
                    287:       INTRINSIC          MAX, MIN
                    288: *     ..
                    289: *     .. Executable Statements ..
                    290: *
                    291: *     Test the input parameters
                    292: *
                    293:       INFO = 0
                    294:       IF( M.LT.0 ) THEN
                    295:          INFO = -1
                    296:       ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
                    297:          INFO = -2
                    298:       ELSE IF( NB.LT.1 ) THEN
                    299:          INFO = -3
                    300:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    301:          INFO = -5
                    302:       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
                    303:          INFO = -7
                    304:       END IF
                    305: *
                    306: *     Handle error in the input parameters.
                    307: *
                    308:       IF( INFO.NE.0 ) THEN
                    309:          CALL XERBLA( 'DORHR_COL', -INFO )
                    310:          RETURN
                    311:       END IF
                    312: *
                    313: *     Quick return if possible
                    314: *
                    315:       IF( MIN( M, N ).EQ.0 ) THEN
                    316:          RETURN
                    317:       END IF
                    318: *
                    319: *     On input, the M-by-N matrix A contains the orthogonal
                    320: *     M-by-N matrix Q_in.
                    321: *
                    322: *     (1) Compute the unit lower-trapezoidal V (ones on the diagonal
                    323: *     are not stored) by performing the "modified" LU-decomposition.
                    324: *
                    325: *     Q_in - ( S ) = V * U = ( V1 ) * U,
                    326: *            ( 0 )           ( V2 )
                    327: *
                    328: *     where 0 is an (M-N)-by-N zero matrix.
                    329: *
                    330: *     (1-1) Factor V1 and U.
                    331: 
                    332:       CALL DLAORHR_COL_GETRFNP( N, N, A, LDA, D, IINFO )
                    333: *
                    334: *     (1-2) Solve for V2.
                    335: *
                    336:       IF( M.GT.N ) THEN
                    337:          CALL DTRSM( 'R', 'U', 'N', 'N', M-N, N, ONE, A, LDA,
                    338:      $               A( N+1, 1 ), LDA )
                    339:       END IF
                    340: *
                    341: *     (2) Reconstruct the block reflector T stored in T(1:NB, 1:N)
                    342: *     as a sequence of upper-triangular blocks with NB-size column
                    343: *     blocking.
                    344: *
                    345: *     Loop over the column blocks of size NB of the array A(1:M,1:N)
                    346: *     and the array T(1:NB,1:N), JB is the column index of a column
                    347: *     block, JNB is the column block size at each step JB.
                    348: *
                    349:       NPLUSONE = N + 1
                    350:       DO JB = 1, N, NB
                    351: *
                    352: *        (2-0) Determine the column block size JNB.
                    353: *
                    354:          JNB = MIN( NPLUSONE-JB, NB )
                    355: *
                    356: *        (2-1) Copy the upper-triangular part of the current JNB-by-JNB
                    357: *        diagonal block U(JB) (of the N-by-N matrix U) stored
                    358: *        in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part
                    359: *        of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1)
                    360: *        column-by-column, total JNB*(JNB+1)/2 elements.
                    361: *
                    362:          JBTEMP1 = JB - 1
                    363:          DO J = JB, JB+JNB-1
                    364:             CALL DCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 )
                    365:          END DO
                    366: *
                    367: *        (2-2) Perform on the upper-triangular part of the current
                    368: *        JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored
                    369: *        in T(1:JNB,JB:JB+JNB-1) the following operation in place:
                    370: *        (-1)*U(JB)*S(JB), i.e the result will be stored in the upper-
                    371: *        triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication
                    372: *        of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB
                    373: *        diagonal block S(JB) of the N-by-N sign matrix S from the
                    374: *        right means changing the sign of each J-th column of the block
                    375: *        U(JB) according to the sign of the diagonal element of the block
                    376: *        S(JB), i.e. S(J,J) that is stored in the array element D(J).
                    377: *
                    378:          DO J = JB, JB+JNB-1
                    379:             IF( D( J ).EQ.ONE ) THEN
                    380:                CALL DSCAL( J-JBTEMP1, -ONE, T( 1, J ), 1 )
                    381:             END IF
                    382:          END DO
                    383: *
                    384: *        (2-3) Perform the triangular solve for the current block
                    385: *        matrix X(JB):
                    386: *
                    387: *               X(JB) * (A(JB)**T) = B(JB), where:
                    388: *
                    389: *               A(JB)**T  is a JNB-by-JNB unit upper-triangular
                    390: *                         coefficient block, and A(JB)=V1(JB), which
                    391: *                         is a JNB-by-JNB unit lower-triangular block
                    392: *                         stored in A(JB:JB+JNB-1,JB:JB+JNB-1).
                    393: *                         The N-by-N matrix V1 is the upper part
                    394: *                         of the M-by-N lower-trapezoidal matrix V
                    395: *                         stored in A(1:M,1:N);
                    396: *
                    397: *               B(JB)     is a JNB-by-JNB  upper-triangular right-hand
                    398: *                         side block, B(JB) = (-1)*U(JB)*S(JB), and
                    399: *                         B(JB) is stored in T(1:JNB,JB:JB+JNB-1);
                    400: *
                    401: *               X(JB)     is a JNB-by-JNB upper-triangular solution
                    402: *                         block, X(JB) is the upper-triangular block
                    403: *                         reflector T(JB), and X(JB) is stored
                    404: *                         in T(1:JNB,JB:JB+JNB-1).
                    405: *
                    406: *             In other words, we perform the triangular solve for the
                    407: *             upper-triangular block T(JB):
                    408: *
                    409: *               T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB).
                    410: *
                    411: *             Even though the blocks X(JB) and B(JB) are upper-
                    412: *             triangular, the routine DTRSM will access all JNB**2
                    413: *             elements of the square T(1:JNB,JB:JB+JNB-1). Therefore,
                    414: *             we need to set to zero the elements of the block
                    415: *             T(1:JNB,JB:JB+JNB-1) below the diagonal before the call
                    416: *             to DTRSM.
                    417: *
                    418: *        (2-3a) Set the elements to zero.
                    419: *
                    420:          JBTEMP2 = JB - 2
                    421:          DO J = JB, JB+JNB-2
                    422:             DO I = J-JBTEMP2, NB
                    423:                T( I, J ) = ZERO
                    424:             END DO
                    425:          END DO
                    426: *
                    427: *        (2-3b) Perform the triangular solve.
                    428: *
                    429:          CALL DTRSM( 'R', 'L', 'T', 'U', JNB, JNB, ONE,
                    430:      $               A( JB, JB ), LDA, T( 1, JB ), LDT )
                    431: *
                    432:       END DO
                    433: *
                    434:       RETURN
                    435: *
                    436: *     End of DORHR_COL
                    437: *
1.2     ! bertrand  438:       END

CVSweb interface <joel.bertrand@systella.fr>