Annotation of rpl/lapack/lapack/dorhr_col.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b DORHR_COL
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DORHR_COL + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorhr_col.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorhr_col.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorhr_col.f">
        !            15: *> [TXT]</a>
        !            16: *>
        !            17: *  Definition:
        !            18: *  ===========
        !            19: *
        !            20: *       SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
        !            21: *
        !            22: *       .. Scalar Arguments ..
        !            23: *       INTEGER           INFO, LDA, LDT, M, N, NB
        !            24: *       ..
        !            25: *       .. Array Arguments ..
        !            26: *       DOUBLE PRECISION  A( LDA, * ), D( * ), T( LDT, * )
        !            27: *       ..
        !            28: *
        !            29: *> \par Purpose:
        !            30: *  =============
        !            31: *>
        !            32: *> \verbatim
        !            33: *>
        !            34: *>  DORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns
        !            35: *>  as input, stored in A, and performs Householder Reconstruction (HR),
        !            36: *>  i.e. reconstructs Householder vectors V(i) implicitly representing
        !            37: *>  another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
        !            38: *>  where S is an N-by-N diagonal matrix with diagonal entries
        !            39: *>  equal to +1 or -1. The Householder vectors (columns V(i) of V) are
        !            40: *>  stored in A on output, and the diagonal entries of S are stored in D.
        !            41: *>  Block reflectors are also returned in T
        !            42: *>  (same output format as DGEQRT).
        !            43: *> \endverbatim
        !            44: *
        !            45: *  Arguments:
        !            46: *  ==========
        !            47: *
        !            48: *> \param[in] M
        !            49: *> \verbatim
        !            50: *>          M is INTEGER
        !            51: *>          The number of rows of the matrix A. M >= 0.
        !            52: *> \endverbatim
        !            53: *>
        !            54: *> \param[in] N
        !            55: *> \verbatim
        !            56: *>          N is INTEGER
        !            57: *>          The number of columns of the matrix A. M >= N >= 0.
        !            58: *> \endverbatim
        !            59: *>
        !            60: *> \param[in] NB
        !            61: *> \verbatim
        !            62: *>          NB is INTEGER
        !            63: *>          The column block size to be used in the reconstruction
        !            64: *>          of Householder column vector blocks in the array A and
        !            65: *>          corresponding block reflectors in the array T. NB >= 1.
        !            66: *>          (Note that if NB > N, then N is used instead of NB
        !            67: *>          as the column block size.)
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in,out] A
        !            71: *> \verbatim
        !            72: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            73: *>
        !            74: *>          On entry:
        !            75: *>
        !            76: *>             The array A contains an M-by-N orthonormal matrix Q_in,
        !            77: *>             i.e the columns of A are orthogonal unit vectors.
        !            78: *>
        !            79: *>          On exit:
        !            80: *>
        !            81: *>             The elements below the diagonal of A represent the unit
        !            82: *>             lower-trapezoidal matrix V of Householder column vectors
        !            83: *>             V(i). The unit diagonal entries of V are not stored
        !            84: *>             (same format as the output below the diagonal in A from
        !            85: *>             DGEQRT). The matrix T and the matrix V stored on output
        !            86: *>             in A implicitly define Q_out.
        !            87: *>
        !            88: *>             The elements above the diagonal contain the factor U
        !            89: *>             of the "modified" LU-decomposition:
        !            90: *>                Q_in - ( S ) = V * U
        !            91: *>                       ( 0 )
        !            92: *>             where 0 is a (M-N)-by-(M-N) zero matrix.
        !            93: *> \endverbatim
        !            94: *>
        !            95: *> \param[in] LDA
        !            96: *> \verbatim
        !            97: *>          LDA is INTEGER
        !            98: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[out] T
        !           102: *> \verbatim
        !           103: *>          T is DOUBLE PRECISION array,
        !           104: *>          dimension (LDT, N)
        !           105: *>
        !           106: *>          Let NOCB = Number_of_output_col_blocks
        !           107: *>                   = CEIL(N/NB)
        !           108: *>
        !           109: *>          On exit, T(1:NB, 1:N) contains NOCB upper-triangular
        !           110: *>          block reflectors used to define Q_out stored in compact
        !           111: *>          form as a sequence of upper-triangular NB-by-NB column
        !           112: *>          blocks (same format as the output T in DGEQRT).
        !           113: *>          The matrix T and the matrix V stored on output in A
        !           114: *>          implicitly define Q_out. NOTE: The lower triangles
        !           115: *>          below the upper-triangular blcoks will be filled with
        !           116: *>          zeros. See Further Details.
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[in] LDT
        !           120: *> \verbatim
        !           121: *>          LDT is INTEGER
        !           122: *>          The leading dimension of the array T.
        !           123: *>          LDT >= max(1,min(NB,N)).
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[out] D
        !           127: *> \verbatim
        !           128: *>          D is DOUBLE PRECISION array, dimension min(M,N).
        !           129: *>          The elements can be only plus or minus one.
        !           130: *>
        !           131: *>          D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
        !           132: *>          1 <= i <= min(M,N), and Q_in_i is Q_in after performing
        !           133: *>          i-1 steps of “modified” Gaussian elimination.
        !           134: *>          See Further Details.
        !           135: *> \endverbatim
        !           136: *>
        !           137: *> \param[out] INFO
        !           138: *> \verbatim
        !           139: *>          INFO is INTEGER
        !           140: *>          = 0:  successful exit
        !           141: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           142: *> \endverbatim
        !           143: *>
        !           144: *> \par Further Details:
        !           145: *  =====================
        !           146: *>
        !           147: *> \verbatim
        !           148: *>
        !           149: *> The computed M-by-M orthogonal factor Q_out is defined implicitly as
        !           150: *> a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in
        !           151: *> the compact WY-representation format in the corresponding blocks of
        !           152: *> matrices V (stored in A) and T.
        !           153: *>
        !           154: *> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
        !           155: *> matrix A contains the column vectors V(i) in NB-size column
        !           156: *> blocks VB(j). For example, VB(1) contains the columns
        !           157: *> V(1), V(2), ... V(NB). NOTE: The unit entries on
        !           158: *> the diagonal of Y are not stored in A.
        !           159: *>
        !           160: *> The number of column blocks is
        !           161: *>
        !           162: *>     NOCB = Number_of_output_col_blocks = CEIL(N/NB)
        !           163: *>
        !           164: *> where each block is of order NB except for the last block, which
        !           165: *> is of order LAST_NB = N - (NOCB-1)*NB.
        !           166: *>
        !           167: *> For example, if M=6,  N=5 and NB=2, the matrix V is
        !           168: *>
        !           169: *>
        !           170: *>     V = (    VB(1),   VB(2), VB(3) ) =
        !           171: *>
        !           172: *>       = (   1                      )
        !           173: *>         ( v21    1                 )
        !           174: *>         ( v31  v32    1            )
        !           175: *>         ( v41  v42  v43   1        )
        !           176: *>         ( v51  v52  v53  v54    1  )
        !           177: *>         ( v61  v62  v63  v54   v65 )
        !           178: *>
        !           179: *>
        !           180: *> For each of the column blocks VB(i), an upper-triangular block
        !           181: *> reflector TB(i) is computed. These blocks are stored as
        !           182: *> a sequence of upper-triangular column blocks in the NB-by-N
        !           183: *> matrix T. The size of each TB(i) block is NB-by-NB, except
        !           184: *> for the last block, whose size is LAST_NB-by-LAST_NB.
        !           185: *>
        !           186: *> For example, if M=6,  N=5 and NB=2, the matrix T is
        !           187: *>
        !           188: *>     T  = (    TB(1),    TB(2), TB(3) ) =
        !           189: *>
        !           190: *>        = ( t11  t12  t13  t14   t15  )
        !           191: *>          (      t22       t24        )
        !           192: *>
        !           193: *>
        !           194: *> The M-by-M factor Q_out is given as a product of NOCB
        !           195: *> orthogonal M-by-M matrices Q_out(i).
        !           196: *>
        !           197: *>     Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
        !           198: *>
        !           199: *> where each matrix Q_out(i) is given by the WY-representation
        !           200: *> using corresponding blocks from the matrices V and T:
        !           201: *>
        !           202: *>     Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
        !           203: *>
        !           204: *> where I is the identity matrix. Here is the formula with matrix
        !           205: *> dimensions:
        !           206: *>
        !           207: *>  Q(i){M-by-M} = I{M-by-M} -
        !           208: *>    VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
        !           209: *>
        !           210: *> where INB = NB, except for the last block NOCB
        !           211: *> for which INB=LAST_NB.
        !           212: *>
        !           213: *> =====
        !           214: *> NOTE:
        !           215: *> =====
        !           216: *>
        !           217: *> If Q_in is the result of doing a QR factorization
        !           218: *> B = Q_in * R_in, then:
        !           219: *>
        !           220: *> B = (Q_out*S) * R_in = Q_out * (S * R_in) = O_out * R_out.
        !           221: *>
        !           222: *> So if one wants to interpret Q_out as the result
        !           223: *> of the QR factorization of B, then corresponding R_out
        !           224: *> should be obtained by R_out = S * R_in, i.e. some rows of R_in
        !           225: *> should be multiplied by -1.
        !           226: *>
        !           227: *> For the details of the algorithm, see [1].
        !           228: *>
        !           229: *> [1] "Reconstructing Householder vectors from tall-skinny QR",
        !           230: *>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
        !           231: *>     E. Solomonik, J. Parallel Distrib. Comput.,
        !           232: *>     vol. 85, pp. 3-31, 2015.
        !           233: *> \endverbatim
        !           234: *>
        !           235: *  Authors:
        !           236: *  ========
        !           237: *
        !           238: *> \author Univ. of Tennessee
        !           239: *> \author Univ. of California Berkeley
        !           240: *> \author Univ. of Colorado Denver
        !           241: *> \author NAG Ltd.
        !           242: *
        !           243: *> \date November 2019
        !           244: *
        !           245: *> \ingroup doubleOTHERcomputational
        !           246: *
        !           247: *> \par Contributors:
        !           248: *  ==================
        !           249: *>
        !           250: *> \verbatim
        !           251: *>
        !           252: *> November   2019, Igor Kozachenko,
        !           253: *>            Computer Science Division,
        !           254: *>            University of California, Berkeley
        !           255: *>
        !           256: *> \endverbatim
        !           257: *
        !           258: *  =====================================================================
        !           259:       SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
        !           260:       IMPLICIT NONE
        !           261: *
        !           262: *  -- LAPACK computational routine (version 3.9.0) --
        !           263: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           264: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           265: *     November 2019
        !           266: *
        !           267: *     .. Scalar Arguments ..
        !           268:       INTEGER           INFO, LDA, LDT, M, N, NB
        !           269: *     ..
        !           270: *     .. Array Arguments ..
        !           271:       DOUBLE PRECISION  A( LDA, * ), D( * ), T( LDT, * )
        !           272: *     ..
        !           273: *
        !           274: *  =====================================================================
        !           275: *
        !           276: *     .. Parameters ..
        !           277:       DOUBLE PRECISION   ONE, ZERO
        !           278:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
        !           279: *     ..
        !           280: *     .. Local Scalars ..
        !           281:       INTEGER            I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB,
        !           282:      $                   NPLUSONE
        !           283: *     ..
        !           284: *     .. External Subroutines ..
        !           285:       EXTERNAL           DCOPY, DLAORHR_COL_GETRFNP, DSCAL, DTRSM,
        !           286:      $                   XERBLA
        !           287: *     ..
        !           288: *     .. Intrinsic Functions ..
        !           289:       INTRINSIC          MAX, MIN
        !           290: *     ..
        !           291: *     .. Executable Statements ..
        !           292: *
        !           293: *     Test the input parameters
        !           294: *
        !           295:       INFO = 0
        !           296:       IF( M.LT.0 ) THEN
        !           297:          INFO = -1
        !           298:       ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
        !           299:          INFO = -2
        !           300:       ELSE IF( NB.LT.1 ) THEN
        !           301:          INFO = -3
        !           302:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           303:          INFO = -5
        !           304:       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
        !           305:          INFO = -7
        !           306:       END IF
        !           307: *
        !           308: *     Handle error in the input parameters.
        !           309: *
        !           310:       IF( INFO.NE.0 ) THEN
        !           311:          CALL XERBLA( 'DORHR_COL', -INFO )
        !           312:          RETURN
        !           313:       END IF
        !           314: *
        !           315: *     Quick return if possible
        !           316: *
        !           317:       IF( MIN( M, N ).EQ.0 ) THEN
        !           318:          RETURN
        !           319:       END IF
        !           320: *
        !           321: *     On input, the M-by-N matrix A contains the orthogonal
        !           322: *     M-by-N matrix Q_in.
        !           323: *
        !           324: *     (1) Compute the unit lower-trapezoidal V (ones on the diagonal
        !           325: *     are not stored) by performing the "modified" LU-decomposition.
        !           326: *
        !           327: *     Q_in - ( S ) = V * U = ( V1 ) * U,
        !           328: *            ( 0 )           ( V2 )
        !           329: *
        !           330: *     where 0 is an (M-N)-by-N zero matrix.
        !           331: *
        !           332: *     (1-1) Factor V1 and U.
        !           333: 
        !           334:       CALL DLAORHR_COL_GETRFNP( N, N, A, LDA, D, IINFO )
        !           335: *
        !           336: *     (1-2) Solve for V2.
        !           337: *
        !           338:       IF( M.GT.N ) THEN
        !           339:          CALL DTRSM( 'R', 'U', 'N', 'N', M-N, N, ONE, A, LDA,
        !           340:      $               A( N+1, 1 ), LDA )
        !           341:       END IF
        !           342: *
        !           343: *     (2) Reconstruct the block reflector T stored in T(1:NB, 1:N)
        !           344: *     as a sequence of upper-triangular blocks with NB-size column
        !           345: *     blocking.
        !           346: *
        !           347: *     Loop over the column blocks of size NB of the array A(1:M,1:N)
        !           348: *     and the array T(1:NB,1:N), JB is the column index of a column
        !           349: *     block, JNB is the column block size at each step JB.
        !           350: *
        !           351:       NPLUSONE = N + 1
        !           352:       DO JB = 1, N, NB
        !           353: *
        !           354: *        (2-0) Determine the column block size JNB.
        !           355: *
        !           356:          JNB = MIN( NPLUSONE-JB, NB )
        !           357: *
        !           358: *        (2-1) Copy the upper-triangular part of the current JNB-by-JNB
        !           359: *        diagonal block U(JB) (of the N-by-N matrix U) stored
        !           360: *        in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part
        !           361: *        of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1)
        !           362: *        column-by-column, total JNB*(JNB+1)/2 elements.
        !           363: *
        !           364:          JBTEMP1 = JB - 1
        !           365:          DO J = JB, JB+JNB-1
        !           366:             CALL DCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 )
        !           367:          END DO
        !           368: *
        !           369: *        (2-2) Perform on the upper-triangular part of the current
        !           370: *        JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored
        !           371: *        in T(1:JNB,JB:JB+JNB-1) the following operation in place:
        !           372: *        (-1)*U(JB)*S(JB), i.e the result will be stored in the upper-
        !           373: *        triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication
        !           374: *        of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB
        !           375: *        diagonal block S(JB) of the N-by-N sign matrix S from the
        !           376: *        right means changing the sign of each J-th column of the block
        !           377: *        U(JB) according to the sign of the diagonal element of the block
        !           378: *        S(JB), i.e. S(J,J) that is stored in the array element D(J).
        !           379: *
        !           380:          DO J = JB, JB+JNB-1
        !           381:             IF( D( J ).EQ.ONE ) THEN
        !           382:                CALL DSCAL( J-JBTEMP1, -ONE, T( 1, J ), 1 )
        !           383:             END IF
        !           384:          END DO
        !           385: *
        !           386: *        (2-3) Perform the triangular solve for the current block
        !           387: *        matrix X(JB):
        !           388: *
        !           389: *               X(JB) * (A(JB)**T) = B(JB), where:
        !           390: *
        !           391: *               A(JB)**T  is a JNB-by-JNB unit upper-triangular
        !           392: *                         coefficient block, and A(JB)=V1(JB), which
        !           393: *                         is a JNB-by-JNB unit lower-triangular block
        !           394: *                         stored in A(JB:JB+JNB-1,JB:JB+JNB-1).
        !           395: *                         The N-by-N matrix V1 is the upper part
        !           396: *                         of the M-by-N lower-trapezoidal matrix V
        !           397: *                         stored in A(1:M,1:N);
        !           398: *
        !           399: *               B(JB)     is a JNB-by-JNB  upper-triangular right-hand
        !           400: *                         side block, B(JB) = (-1)*U(JB)*S(JB), and
        !           401: *                         B(JB) is stored in T(1:JNB,JB:JB+JNB-1);
        !           402: *
        !           403: *               X(JB)     is a JNB-by-JNB upper-triangular solution
        !           404: *                         block, X(JB) is the upper-triangular block
        !           405: *                         reflector T(JB), and X(JB) is stored
        !           406: *                         in T(1:JNB,JB:JB+JNB-1).
        !           407: *
        !           408: *             In other words, we perform the triangular solve for the
        !           409: *             upper-triangular block T(JB):
        !           410: *
        !           411: *               T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB).
        !           412: *
        !           413: *             Even though the blocks X(JB) and B(JB) are upper-
        !           414: *             triangular, the routine DTRSM will access all JNB**2
        !           415: *             elements of the square T(1:JNB,JB:JB+JNB-1). Therefore,
        !           416: *             we need to set to zero the elements of the block
        !           417: *             T(1:JNB,JB:JB+JNB-1) below the diagonal before the call
        !           418: *             to DTRSM.
        !           419: *
        !           420: *        (2-3a) Set the elements to zero.
        !           421: *
        !           422:          JBTEMP2 = JB - 2
        !           423:          DO J = JB, JB+JNB-2
        !           424:             DO I = J-JBTEMP2, NB
        !           425:                T( I, J ) = ZERO
        !           426:             END DO
        !           427:          END DO
        !           428: *
        !           429: *        (2-3b) Perform the triangular solve.
        !           430: *
        !           431:          CALL DTRSM( 'R', 'L', 'T', 'U', JNB, JNB, ONE,
        !           432:      $               A( JB, JB ), LDA, T( 1, JB ), LDT )
        !           433: *
        !           434:       END DO
        !           435: *
        !           436:       RETURN
        !           437: *
        !           438: *     End of DORHR_COL
        !           439: *
        !           440:       END

CVSweb interface <joel.bertrand@systella.fr>