File:  [local] / rpl / lapack / lapack / dorgtsqr_row.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:55:30 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Ajout de fichiers de lapack 3.11

    1: *> \brief \b DORGTSQR_ROW
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DORGTSQR_ROW + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgtsqr_row.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgtsqr_row.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgtsqr_row.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
   22: *      $                         LWORK, INFO )
   23: *       IMPLICIT NONE
   24: *
   25: *       .. Scalar Arguments ..
   26: *       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
   30: *       ..
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DORGTSQR_ROW generates an M-by-N real matrix Q_out with
   38: *> orthonormal columns from the output of DLATSQR. These N orthonormal
   39: *> columns are the first N columns of a product of complex unitary
   40: *> matrices Q(k)_in of order M, which are returned by DLATSQR in
   41: *> a special format.
   42: *>
   43: *>      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
   44: *>
   45: *> The input matrices Q(k)_in are stored in row and column blocks in A.
   46: *> See the documentation of DLATSQR for more details on the format of
   47: *> Q(k)_in, where each Q(k)_in is represented by block Householder
   48: *> transformations. This routine calls an auxiliary routine DLARFB_GETT,
   49: *> where the computation is performed on each individual block. The
   50: *> algorithm first sweeps NB-sized column blocks from the right to left
   51: *> starting in the bottom row block and continues to the top row block
   52: *> (hence _ROW in the routine name). This sweep is in reverse order of
   53: *> the order in which DLATSQR generates the output blocks.
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] M
   60: *> \verbatim
   61: *>          M is INTEGER
   62: *>          The number of rows of the matrix A.  M >= 0.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The number of columns of the matrix A. M >= N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] MB
   72: *> \verbatim
   73: *>          MB is INTEGER
   74: *>          The row block size used by DLATSQR to return
   75: *>          arrays A and T. MB > N.
   76: *>          (Note that if MB > M, then M is used instead of MB
   77: *>          as the row block size).
   78: *> \endverbatim
   79: *>
   80: *> \param[in] NB
   81: *> \verbatim
   82: *>          NB is INTEGER
   83: *>          The column block size used by DLATSQR to return
   84: *>          arrays A and T. NB >= 1.
   85: *>          (Note that if NB > N, then N is used instead of NB
   86: *>          as the column block size).
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] A
   90: *> \verbatim
   91: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   92: *>
   93: *>          On entry:
   94: *>
   95: *>             The elements on and above the diagonal are not used as
   96: *>             input. The elements below the diagonal represent the unit
   97: *>             lower-trapezoidal blocked matrix V computed by DLATSQR
   98: *>             that defines the input matrices Q_in(k) (ones on the
   99: *>             diagonal are not stored). See DLATSQR for more details.
  100: *>
  101: *>          On exit:
  102: *>
  103: *>             The array A contains an M-by-N orthonormal matrix Q_out,
  104: *>             i.e the columns of A are orthogonal unit vectors.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDA
  108: *> \verbatim
  109: *>          LDA is INTEGER
  110: *>          The leading dimension of the array A.  LDA >= max(1,M).
  111: *> \endverbatim
  112: *>
  113: *> \param[in] T
  114: *> \verbatim
  115: *>          T is DOUBLE PRECISION array,
  116: *>          dimension (LDT, N * NIRB)
  117: *>          where NIRB = Number_of_input_row_blocks
  118: *>                     = MAX( 1, CEIL((M-N)/(MB-N)) )
  119: *>          Let NICB = Number_of_input_col_blocks
  120: *>                   = CEIL(N/NB)
  121: *>
  122: *>          The upper-triangular block reflectors used to define the
  123: *>          input matrices Q_in(k), k=(1:NIRB*NICB). The block
  124: *>          reflectors are stored in compact form in NIRB block
  125: *>          reflector sequences. Each of the NIRB block reflector
  126: *>          sequences is stored in a larger NB-by-N column block of T
  127: *>          and consists of NICB smaller NB-by-NB upper-triangular
  128: *>          column blocks. See DLATSQR for more details on the format
  129: *>          of T.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDT
  133: *> \verbatim
  134: *>          LDT is INTEGER
  135: *>          The leading dimension of the array T.
  136: *>          LDT >= max(1,min(NB,N)).
  137: *> \endverbatim
  138: *>
  139: *> \param[out] WORK
  140: *> \verbatim
  141: *>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  142: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LWORK
  146: *> \verbatim
  147: *>          The dimension of the array WORK.
  148: *>          LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
  149: *>          where NBLOCAL=MIN(NB,N).
  150: *>          If LWORK = -1, then a workspace query is assumed.
  151: *>          The routine only calculates the optimal size of the WORK
  152: *>          array, returns this value as the first entry of the WORK
  153: *>          array, and no error message related to LWORK is issued
  154: *>          by XERBLA.
  155: *> \endverbatim
  156: *>
  157: *> \param[out] INFO
  158: *> \verbatim
  159: *>          INFO is INTEGER
  160: *>          = 0:  successful exit
  161: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  162: *> \endverbatim
  163: *>
  164: *  Authors:
  165: *  ========
  166: *
  167: *> \author Univ. of Tennessee
  168: *> \author Univ. of California Berkeley
  169: *> \author Univ. of Colorado Denver
  170: *> \author NAG Ltd.
  171: *
  172: *> \ingroup doubleOTHERcomputational
  173: *
  174: *> \par Contributors:
  175: *  ==================
  176: *>
  177: *> \verbatim
  178: *>
  179: *> November 2020, Igor Kozachenko,
  180: *>                Computer Science Division,
  181: *>                University of California, Berkeley
  182: *>
  183: *> \endverbatim
  184: *>
  185: *  =====================================================================
  186:       SUBROUTINE DORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
  187:      $                         LWORK, INFO )
  188:       IMPLICIT NONE
  189: *
  190: *  -- LAPACK computational routine --
  191: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  192: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  193: *
  194: *     .. Scalar Arguments ..
  195:       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
  196: *     ..
  197: *     .. Array Arguments ..
  198:       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
  199: *     ..
  200: *
  201: *  =====================================================================
  202: *
  203: *     .. Parameters ..
  204:       DOUBLE PRECISION   ONE, ZERO
  205:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  206: *     ..
  207: *     .. Local Scalars ..
  208:       LOGICAL            LQUERY
  209:       INTEGER            NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
  210:      $                   LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
  211:      $                   KB, KB_LAST, KNB, MB1
  212: *     ..
  213: *     .. Local Arrays ..
  214:       DOUBLE PRECISION   DUMMY( 1, 1 )
  215: *     ..
  216: *     .. External Subroutines ..
  217:       EXTERNAL           DLARFB_GETT, DLASET, XERBLA
  218: *     ..
  219: *     .. Intrinsic Functions ..
  220:       INTRINSIC          DBLE, MAX, MIN
  221: *     ..
  222: *     .. Executable Statements ..
  223: *
  224: *     Test the input parameters
  225: *
  226:       INFO = 0
  227:       LQUERY  = LWORK.EQ.-1
  228:       IF( M.LT.0 ) THEN
  229:          INFO = -1
  230:       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
  231:          INFO = -2
  232:       ELSE IF( MB.LE.N ) THEN
  233:          INFO = -3
  234:       ELSE IF( NB.LT.1 ) THEN
  235:          INFO = -4
  236:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  237:          INFO = -6
  238:       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
  239:          INFO = -8
  240:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  241:          INFO = -10
  242:       END IF
  243: *
  244:       NBLOCAL = MIN( NB, N )
  245: *
  246: *     Determine the workspace size.
  247: *
  248:       IF( INFO.EQ.0 ) THEN
  249:          LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) )
  250:       END IF
  251: *
  252: *     Handle error in the input parameters and handle the workspace query.
  253: *
  254:       IF( INFO.NE.0 ) THEN
  255:          CALL XERBLA( 'DORGTSQR_ROW', -INFO )
  256:          RETURN
  257:       ELSE IF ( LQUERY ) THEN
  258:          WORK( 1 ) = DBLE( LWORKOPT )
  259:          RETURN
  260:       END IF
  261: *
  262: *     Quick return if possible
  263: *
  264:       IF( MIN( M, N ).EQ.0 ) THEN
  265:          WORK( 1 ) = DBLE( LWORKOPT )
  266:          RETURN
  267:       END IF
  268: *
  269: *     (0) Set the upper-triangular part of the matrix A to zero and
  270: *     its diagonal elements to one.
  271: *
  272:       CALL DLASET('U', M, N, ZERO, ONE, A, LDA )
  273: *
  274: *     KB_LAST is the column index of the last column block reflector
  275: *     in the matrices T and V.
  276: *
  277:       KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1
  278: *
  279: *
  280: *     (1) Bottom-up loop over row blocks of A, except the top row block.
  281: *     NOTE: If MB>=M, then the loop is never executed.
  282: *
  283:       IF ( MB.LT.M ) THEN
  284: *
  285: *        MB2 is the row blocking size for the row blocks before the
  286: *        first top row block in the matrix A. IB is the row index for
  287: *        the row blocks in the matrix A before the first top row block.
  288: *        IB_BOTTOM is the row index for the last bottom row block
  289: *        in the matrix A. JB_T is the column index of the corresponding
  290: *        column block in the matrix T.
  291: *
  292: *        Initialize variables.
  293: *
  294: *        NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
  295: *        including the first row block.
  296: *
  297:          MB2 = MB - N
  298:          M_PLUS_ONE = M + 1
  299:          ITMP = ( M - MB - 1 ) / MB2
  300:          IB_BOTTOM = ITMP * MB2 + MB + 1
  301:          NUM_ALL_ROW_BLOCKS = ITMP + 2
  302:          JB_T = NUM_ALL_ROW_BLOCKS * N + 1
  303: *
  304:          DO IB = IB_BOTTOM, MB+1, -MB2
  305: *
  306: *           Determine the block size IMB for the current row block
  307: *           in the matrix A.
  308: *
  309:             IMB = MIN( M_PLUS_ONE - IB, MB2 )
  310: *
  311: *           Determine the column index JB_T for the current column block
  312: *           in the matrix T.
  313: *
  314:             JB_T = JB_T - N
  315: *
  316: *           Apply column blocks of H in the row block from right to left.
  317: *
  318: *           KB is the column index of the current column block reflector
  319: *           in the matrices T and V.
  320: *
  321:             DO KB = KB_LAST, 1, -NBLOCAL
  322: *
  323: *              Determine the size of the current column block KNB in
  324: *              the matrices T and V.
  325: *
  326:                KNB = MIN( NBLOCAL, N - KB + 1 )
  327: *
  328:                CALL DLARFB_GETT( 'I', IMB, N-KB+1, KNB,
  329:      $                     T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA,
  330:      $                     A( IB, KB ), LDA, WORK, KNB )
  331: *
  332:             END DO
  333: *
  334:          END DO
  335: *
  336:       END IF
  337: *
  338: *     (2) Top row block of A.
  339: *     NOTE: If MB>=M, then we have only one row block of A of size M
  340: *     and we work on the entire matrix A.
  341: *
  342:       MB1 = MIN( MB, M )
  343: *
  344: *     Apply column blocks of H in the top row block from right to left.
  345: *
  346: *     KB is the column index of the current block reflector in
  347: *     the matrices T and V.
  348: *
  349:       DO KB = KB_LAST, 1, -NBLOCAL
  350: *
  351: *        Determine the size of the current column block KNB in
  352: *        the matrices T and V.
  353: *
  354:          KNB = MIN( NBLOCAL, N - KB + 1 )
  355: *
  356:          IF( MB1-KB-KNB+1.EQ.0 ) THEN
  357: *
  358: *           In SLARFB_GETT parameters, when M=0, then the matrix B
  359: *           does not exist, hence we need to pass a dummy array
  360: *           reference DUMMY(1,1) to B with LDDUMMY=1.
  361: *
  362:             CALL DLARFB_GETT( 'N', 0, N-KB+1, KNB,
  363:      $                        T( 1, KB ), LDT, A( KB, KB ), LDA,
  364:      $                        DUMMY( 1, 1 ), 1, WORK, KNB )
  365:          ELSE
  366:             CALL DLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB,
  367:      $                        T( 1, KB ), LDT, A( KB, KB ), LDA,
  368:      $                        A( KB+KNB, KB), LDA, WORK, KNB )
  369: 
  370:          END IF
  371: *
  372:       END DO
  373: *
  374:       WORK( 1 ) = DBLE( LWORKOPT )
  375:       RETURN
  376: *
  377: *     End of DORGTSQR_ROW
  378: *
  379:       END

CVSweb interface <joel.bertrand@systella.fr>