File:  [local] / rpl / lapack / lapack / dorgtsqr.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:02 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DORGTSQR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DORGTSQR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgtsqr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgtsqr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgtsqr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
   22: *      $                     INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
   29: *       ..
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
   37: *> which are the first N columns of a product of real orthogonal
   38: *> matrices of order M which are returned by DLATSQR
   39: *>
   40: *>      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
   41: *>
   42: *> See the documentation for DLATSQR.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] M
   49: *> \verbatim
   50: *>          M is INTEGER
   51: *>          The number of rows of the matrix A.  M >= 0.
   52: *> \endverbatim
   53: *>
   54: *> \param[in] N
   55: *> \verbatim
   56: *>          N is INTEGER
   57: *>          The number of columns of the matrix A. M >= N >= 0.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] MB
   61: *> \verbatim
   62: *>          MB is INTEGER
   63: *>          The row block size used by DLATSQR to return
   64: *>          arrays A and T. MB > N.
   65: *>          (Note that if MB > M, then M is used instead of MB
   66: *>          as the row block size).
   67: *> \endverbatim
   68: *>
   69: *> \param[in] NB
   70: *> \verbatim
   71: *>          NB is INTEGER
   72: *>          The column block size used by DLATSQR to return
   73: *>          arrays A and T. NB >= 1.
   74: *>          (Note that if NB > N, then N is used instead of NB
   75: *>          as the column block size).
   76: *> \endverbatim
   77: *>
   78: *> \param[in,out] A
   79: *> \verbatim
   80: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   81: *>
   82: *>          On entry:
   83: *>
   84: *>             The elements on and above the diagonal are not accessed.
   85: *>             The elements below the diagonal represent the unit
   86: *>             lower-trapezoidal blocked matrix V computed by DLATSQR
   87: *>             that defines the input matrices Q_in(k) (ones on the
   88: *>             diagonal are not stored) (same format as the output A
   89: *>             below the diagonal in DLATSQR).
   90: *>
   91: *>          On exit:
   92: *>
   93: *>             The array A contains an M-by-N orthonormal matrix Q_out,
   94: *>             i.e the columns of A are orthogonal unit vectors.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] LDA
   98: *> \verbatim
   99: *>          LDA is INTEGER
  100: *>          The leading dimension of the array A.  LDA >= max(1,M).
  101: *> \endverbatim
  102: *>
  103: *> \param[in] T
  104: *> \verbatim
  105: *>          T is DOUBLE PRECISION array,
  106: *>          dimension (LDT, N * NIRB)
  107: *>          where NIRB = Number_of_input_row_blocks
  108: *>                     = MAX( 1, CEIL((M-N)/(MB-N)) )
  109: *>          Let NICB = Number_of_input_col_blocks
  110: *>                   = CEIL(N/NB)
  111: *>
  112: *>          The upper-triangular block reflectors used to define the
  113: *>          input matrices Q_in(k), k=(1:NIRB*NICB). The block
  114: *>          reflectors are stored in compact form in NIRB block
  115: *>          reflector sequences. Each of NIRB block reflector sequences
  116: *>          is stored in a larger NB-by-N column block of T and consists
  117: *>          of NICB smaller NB-by-NB upper-triangular column blocks.
  118: *>          (same format as the output T in DLATSQR).
  119: *> \endverbatim
  120: *>
  121: *> \param[in] LDT
  122: *> \verbatim
  123: *>          LDT is INTEGER
  124: *>          The leading dimension of the array T.
  125: *>          LDT >= max(1,min(NB1,N)).
  126: *> \endverbatim
  127: *>
  128: *> \param[out] WORK
  129: *> \verbatim
  130: *>          (workspace) DOUBLE PRECISION array, dimension (MAX(2,LWORK))
  131: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] LWORK
  135: *> \verbatim
  136: *>          The dimension of the array WORK.  LWORK >= (M+NB)*N.
  137: *>          If LWORK = -1, then a workspace query is assumed.
  138: *>          The routine only calculates the optimal size of the WORK
  139: *>          array, returns this value as the first entry of the WORK
  140: *>          array, and no error message related to LWORK is issued
  141: *>          by XERBLA.
  142: *> \endverbatim
  143: *>
  144: *> \param[out] INFO
  145: *> \verbatim
  146: *>          INFO is INTEGER
  147: *>          = 0:  successful exit
  148: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  149: *> \endverbatim
  150: *>
  151: *  Authors:
  152: *  ========
  153: *
  154: *> \author Univ. of Tennessee
  155: *> \author Univ. of California Berkeley
  156: *> \author Univ. of Colorado Denver
  157: *> \author NAG Ltd.
  158: *
  159: *> \ingroup doubleOTHERcomputational
  160: *
  161: *> \par Contributors:
  162: *  ==================
  163: *>
  164: *> \verbatim
  165: *>
  166: *> November 2019, Igor Kozachenko,
  167: *>                Computer Science Division,
  168: *>                University of California, Berkeley
  169: *>
  170: *> \endverbatim
  171: *
  172: *  =====================================================================
  173:       SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
  174:      $                     INFO )
  175:       IMPLICIT NONE
  176: *
  177: *  -- LAPACK computational routine --
  178: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  179: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  180: *
  181: *     .. Scalar Arguments ..
  182:       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
  183: *     ..
  184: *     .. Array Arguments ..
  185:       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
  186: *     ..
  187: *
  188: *  =====================================================================
  189: *
  190: *     .. Parameters ..
  191:       DOUBLE PRECISION   ONE, ZERO
  192:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  193: *     ..
  194: *     .. Local Scalars ..
  195:       LOGICAL            LQUERY
  196:       INTEGER            IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
  197: *     ..
  198: *     .. External Subroutines ..
  199:       EXTERNAL           DCOPY, DLAMTSQR, DLASET, XERBLA
  200: *     ..
  201: *     .. Intrinsic Functions ..
  202:       INTRINSIC          DBLE, MAX, MIN
  203: *     ..
  204: *     .. Executable Statements ..
  205: *
  206: *     Test the input parameters
  207: *
  208:       LQUERY  = LWORK.EQ.-1
  209:       INFO = 0
  210:       IF( M.LT.0 ) THEN
  211:          INFO = -1
  212:       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
  213:          INFO = -2
  214:       ELSE IF( MB.LE.N ) THEN
  215:          INFO = -3
  216:       ELSE IF( NB.LT.1 ) THEN
  217:          INFO = -4
  218:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  219:          INFO = -6
  220:       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
  221:          INFO = -8
  222:       ELSE
  223: *
  224: *        Test the input LWORK for the dimension of the array WORK.
  225: *        This workspace is used to store array C(LDC, N) and WORK(LWORK)
  226: *        in the call to DLAMTSQR. See the documentation for DLAMTSQR.
  227: *
  228:          IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN
  229:             INFO = -10
  230:          ELSE
  231: *
  232: *           Set block size for column blocks
  233: *
  234:             NBLOCAL = MIN( NB, N )
  235: *
  236: *           LWORK = -1, then set the size for the array C(LDC,N)
  237: *           in DLAMTSQR call and set the optimal size of the work array
  238: *           WORK(LWORK) in DLAMTSQR call.
  239: *
  240:             LDC = M
  241:             LC = LDC*N
  242:             LW = N * NBLOCAL
  243: *
  244:             LWORKOPT = LC+LW
  245: *
  246:             IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
  247:                INFO = -10
  248:             END IF
  249:          END IF
  250: *
  251:       END IF
  252: *
  253: *     Handle error in the input parameters and return workspace query.
  254: *
  255:       IF( INFO.NE.0 ) THEN
  256:          CALL XERBLA( 'DORGTSQR', -INFO )
  257:          RETURN
  258:       ELSE IF ( LQUERY ) THEN
  259:          WORK( 1 ) = DBLE( LWORKOPT )
  260:          RETURN
  261:       END IF
  262: *
  263: *     Quick return if possible
  264: *
  265:       IF( MIN( M, N ).EQ.0 ) THEN
  266:          WORK( 1 ) = DBLE( LWORKOPT )
  267:          RETURN
  268:       END IF
  269: *
  270: *     (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
  271: *     of M-by-M orthogonal matrix Q_in, which is implicitly stored in
  272: *     the subdiagonal part of input array A and in the input array T.
  273: *     Perform by the following operation using the routine DLAMTSQR.
  274: *
  275: *         Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
  276: *                        ( 0 )        0 is a (M-N)-by-N zero matrix.
  277: *
  278: *     (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
  279: *     on the diagonal and zeros elsewhere.
  280: *
  281:       CALL DLASET( 'F', M, N, ZERO, ONE, WORK, LDC )
  282: *
  283: *     (1b)  On input, WORK(1:LDC*N) stores ( I );
  284: *                                          ( 0 )
  285: *
  286: *           On output, WORK(1:LDC*N) stores Q1_in.
  287: *
  288:       CALL DLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
  289:      $               WORK, LDC, WORK( LC+1 ), LW, IINFO )
  290: *
  291: *     (2) Copy the result from the part of the work array (1:M,1:N)
  292: *     with the leading dimension LDC that starts at WORK(1) into
  293: *     the output array A(1:M,1:N) column-by-column.
  294: *
  295:       DO J = 1, N
  296:          CALL DCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
  297:       END DO
  298: *
  299:       WORK( 1 ) = DBLE( LWORKOPT )
  300:       RETURN
  301: *
  302: *     End of DORGTSQR
  303: *
  304:       END

CVSweb interface <joel.bertrand@systella.fr>