--- rpl/lapack/lapack/dorgrq.f 2010/08/06 15:32:31 1.4
+++ rpl/lapack/lapack/dorgrq.f 2014/01/27 09:28:24 1.13
@@ -1,9 +1,137 @@
+*> \brief \b DORGRQ
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DORGRQ + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DORGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, K, LDA, LWORK, M, N
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DORGRQ generates an M-by-N real matrix Q with orthonormal rows,
+*> which is defined as the last M rows of a product of K elementary
+*> reflectors of order N
+*>
+*> Q = H(1) H(2) . . . H(k)
+*>
+*> as returned by DGERQF.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix Q. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix Q. N >= M.
+*> \endverbatim
+*>
+*> \param[in] K
+*> \verbatim
+*> K is INTEGER
+*> The number of elementary reflectors whose product defines the
+*> matrix Q. M >= K >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*> On entry, the (m-k+i)-th row must contain the vector which
+*> defines the elementary reflector H(i), for i = 1,2,...,k, as
+*> returned by DGERQF in the last k rows of its array argument
+*> A.
+*> On exit, the M-by-N matrix Q.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The first dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in] TAU
+*> \verbatim
+*> TAU is DOUBLE PRECISION array, dimension (K)
+*> TAU(i) must contain the scalar factor of the elementary
+*> reflector H(i), as returned by DGERQF.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK. LWORK >= max(1,M).
+*> For optimum performance LWORK >= M*NB, where NB is the
+*> optimal blocksize.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument has an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup doubleOTHERcomputational
+*
+* =====================================================================
SUBROUTINE DORGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
-* -- LAPACK routine (version 3.2) --
+* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
+* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, LWORK, M, N
@@ -12,61 +140,6 @@
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
-* Purpose
-* =======
-*
-* DORGRQ generates an M-by-N real matrix Q with orthonormal rows,
-* which is defined as the last M rows of a product of K elementary
-* reflectors of order N
-*
-* Q = H(1) H(2) . . . H(k)
-*
-* as returned by DGERQF.
-*
-* Arguments
-* =========
-*
-* M (input) INTEGER
-* The number of rows of the matrix Q. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix Q. N >= M.
-*
-* K (input) INTEGER
-* The number of elementary reflectors whose product defines the
-* matrix Q. M >= K >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* On entry, the (m-k+i)-th row must contain the vector which
-* defines the elementary reflector H(i), for i = 1,2,...,k, as
-* returned by DGERQF in the last k rows of its array argument
-* A.
-* On exit, the M-by-N matrix Q.
-*
-* LDA (input) INTEGER
-* The first dimension of the array A. LDA >= max(1,M).
-*
-* TAU (input) DOUBLE PRECISION array, dimension (K)
-* TAU(i) must contain the scalar factor of the elementary
-* reflector H(i), as returned by DGERQF.
-*
-* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= max(1,M).
-* For optimum performance LWORK >= M*NB, where NB is the
-* optimal blocksize.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument has an illegal value
-*
* =====================================================================
*
* .. Parameters ..
@@ -193,14 +266,14 @@
CALL DLARFT( 'Backward', 'Rowwise', N-K+I+IB-1, IB,
$ A( II, 1 ), LDA, TAU( I ), WORK, LDWORK )
*
-* Apply H' to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
+* Apply H**T to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
*
CALL DLARFB( 'Right', 'Transpose', 'Backward', 'Rowwise',
$ II-1, N-K+I+IB-1, IB, A( II, 1 ), LDA, WORK,
$ LDWORK, A, LDA, WORK( IB+1 ), LDWORK )
END IF
*
-* Apply H' to columns 1:n-k+i+ib-1 of current block
+* Apply H**T to columns 1:n-k+i+ib-1 of current block
*
CALL DORGR2( IB, N-K+I+IB-1, IB, A( II, 1 ), LDA, TAU( I ),
$ WORK, IINFO )