File:  [local] / rpl / lapack / lapack / dorglq.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:54 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, K, LDA, LWORK, M, N
   10: *     ..
   11: *     .. Array Arguments ..
   12:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
   13: *     ..
   14: *
   15: *  Purpose
   16: *  =======
   17: *
   18: *  DORGLQ generates an M-by-N real matrix Q with orthonormal rows,
   19: *  which is defined as the first M rows of a product of K elementary
   20: *  reflectors of order N
   21: *
   22: *        Q  =  H(k) . . . H(2) H(1)
   23: *
   24: *  as returned by DGELQF.
   25: *
   26: *  Arguments
   27: *  =========
   28: *
   29: *  M       (input) INTEGER
   30: *          The number of rows of the matrix Q. M >= 0.
   31: *
   32: *  N       (input) INTEGER
   33: *          The number of columns of the matrix Q. N >= M.
   34: *
   35: *  K       (input) INTEGER
   36: *          The number of elementary reflectors whose product defines the
   37: *          matrix Q. M >= K >= 0.
   38: *
   39: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   40: *          On entry, the i-th row must contain the vector which defines
   41: *          the elementary reflector H(i), for i = 1,2,...,k, as returned
   42: *          by DGELQF in the first k rows of its array argument A.
   43: *          On exit, the M-by-N matrix Q.
   44: *
   45: *  LDA     (input) INTEGER
   46: *          The first dimension of the array A. LDA >= max(1,M).
   47: *
   48: *  TAU     (input) DOUBLE PRECISION array, dimension (K)
   49: *          TAU(i) must contain the scalar factor of the elementary
   50: *          reflector H(i), as returned by DGELQF.
   51: *
   52: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   53: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   54: *
   55: *  LWORK   (input) INTEGER
   56: *          The dimension of the array WORK. LWORK >= max(1,M).
   57: *          For optimum performance LWORK >= M*NB, where NB is
   58: *          the optimal blocksize.
   59: *
   60: *          If LWORK = -1, then a workspace query is assumed; the routine
   61: *          only calculates the optimal size of the WORK array, returns
   62: *          this value as the first entry of the WORK array, and no error
   63: *          message related to LWORK is issued by XERBLA.
   64: *
   65: *  INFO    (output) INTEGER
   66: *          = 0:  successful exit
   67: *          < 0:  if INFO = -i, the i-th argument has an illegal value
   68: *
   69: *  =====================================================================
   70: *
   71: *     .. Parameters ..
   72:       DOUBLE PRECISION   ZERO
   73:       PARAMETER          ( ZERO = 0.0D+0 )
   74: *     ..
   75: *     .. Local Scalars ..
   76:       LOGICAL            LQUERY
   77:       INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
   78:      $                   LWKOPT, NB, NBMIN, NX
   79: *     ..
   80: *     .. External Subroutines ..
   81:       EXTERNAL           DLARFB, DLARFT, DORGL2, XERBLA
   82: *     ..
   83: *     .. Intrinsic Functions ..
   84:       INTRINSIC          MAX, MIN
   85: *     ..
   86: *     .. External Functions ..
   87:       INTEGER            ILAENV
   88:       EXTERNAL           ILAENV
   89: *     ..
   90: *     .. Executable Statements ..
   91: *
   92: *     Test the input arguments
   93: *
   94:       INFO = 0
   95:       NB = ILAENV( 1, 'DORGLQ', ' ', M, N, K, -1 )
   96:       LWKOPT = MAX( 1, M )*NB
   97:       WORK( 1 ) = LWKOPT
   98:       LQUERY = ( LWORK.EQ.-1 )
   99:       IF( M.LT.0 ) THEN
  100:          INFO = -1
  101:       ELSE IF( N.LT.M ) THEN
  102:          INFO = -2
  103:       ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
  104:          INFO = -3
  105:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  106:          INFO = -5
  107:       ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
  108:          INFO = -8
  109:       END IF
  110:       IF( INFO.NE.0 ) THEN
  111:          CALL XERBLA( 'DORGLQ', -INFO )
  112:          RETURN
  113:       ELSE IF( LQUERY ) THEN
  114:          RETURN
  115:       END IF
  116: *
  117: *     Quick return if possible
  118: *
  119:       IF( M.LE.0 ) THEN
  120:          WORK( 1 ) = 1
  121:          RETURN
  122:       END IF
  123: *
  124:       NBMIN = 2
  125:       NX = 0
  126:       IWS = M
  127:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
  128: *
  129: *        Determine when to cross over from blocked to unblocked code.
  130: *
  131:          NX = MAX( 0, ILAENV( 3, 'DORGLQ', ' ', M, N, K, -1 ) )
  132:          IF( NX.LT.K ) THEN
  133: *
  134: *           Determine if workspace is large enough for blocked code.
  135: *
  136:             LDWORK = M
  137:             IWS = LDWORK*NB
  138:             IF( LWORK.LT.IWS ) THEN
  139: *
  140: *              Not enough workspace to use optimal NB:  reduce NB and
  141: *              determine the minimum value of NB.
  142: *
  143:                NB = LWORK / LDWORK
  144:                NBMIN = MAX( 2, ILAENV( 2, 'DORGLQ', ' ', M, N, K, -1 ) )
  145:             END IF
  146:          END IF
  147:       END IF
  148: *
  149:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
  150: *
  151: *        Use blocked code after the last block.
  152: *        The first kk rows are handled by the block method.
  153: *
  154:          KI = ( ( K-NX-1 ) / NB )*NB
  155:          KK = MIN( K, KI+NB )
  156: *
  157: *        Set A(kk+1:m,1:kk) to zero.
  158: *
  159:          DO 20 J = 1, KK
  160:             DO 10 I = KK + 1, M
  161:                A( I, J ) = ZERO
  162:    10       CONTINUE
  163:    20    CONTINUE
  164:       ELSE
  165:          KK = 0
  166:       END IF
  167: *
  168: *     Use unblocked code for the last or only block.
  169: *
  170:       IF( KK.LT.M )
  171:      $   CALL DORGL2( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA,
  172:      $                TAU( KK+1 ), WORK, IINFO )
  173: *
  174:       IF( KK.GT.0 ) THEN
  175: *
  176: *        Use blocked code
  177: *
  178:          DO 50 I = KI + 1, 1, -NB
  179:             IB = MIN( NB, K-I+1 )
  180:             IF( I+IB.LE.M ) THEN
  181: *
  182: *              Form the triangular factor of the block reflector
  183: *              H = H(i) H(i+1) . . . H(i+ib-1)
  184: *
  185:                CALL DLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
  186:      $                      LDA, TAU( I ), WORK, LDWORK )
  187: *
  188: *              Apply H' to A(i+ib:m,i:n) from the right
  189: *
  190:                CALL DLARFB( 'Right', 'Transpose', 'Forward', 'Rowwise',
  191:      $                      M-I-IB+1, N-I+1, IB, A( I, I ), LDA, WORK,
  192:      $                      LDWORK, A( I+IB, I ), LDA, WORK( IB+1 ),
  193:      $                      LDWORK )
  194:             END IF
  195: *
  196: *           Apply H' to columns i:n of current block
  197: *
  198:             CALL DORGL2( IB, N-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
  199:      $                   IINFO )
  200: *
  201: *           Set columns 1:i-1 of current block to zero
  202: *
  203:             DO 40 J = 1, I - 1
  204:                DO 30 L = I, I + IB - 1
  205:                   A( L, J ) = ZERO
  206:    30          CONTINUE
  207:    40       CONTINUE
  208:    50    CONTINUE
  209:       END IF
  210: *
  211:       WORK( 1 ) = IWS
  212:       RETURN
  213: *
  214: *     End of DORGLQ
  215: *
  216:       END

CVSweb interface <joel.bertrand@systella.fr>