Annotation of rpl/lapack/lapack/dorglq.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DORGLQ
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DORGLQ + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorglq.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorglq.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorglq.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER            INFO, K, LDA, LWORK, M, N
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
        !            28: *       ..
        !            29: *  
        !            30: *
        !            31: *> \par Purpose:
        !            32: *  =============
        !            33: *>
        !            34: *> \verbatim
        !            35: *>
        !            36: *> DORGLQ generates an M-by-N real matrix Q with orthonormal rows,
        !            37: *> which is defined as the first M rows of a product of K elementary
        !            38: *> reflectors of order N
        !            39: *>
        !            40: *>       Q  =  H(k) . . . H(2) H(1)
        !            41: *>
        !            42: *> as returned by DGELQF.
        !            43: *> \endverbatim
        !            44: *
        !            45: *  Arguments:
        !            46: *  ==========
        !            47: *
        !            48: *> \param[in] M
        !            49: *> \verbatim
        !            50: *>          M is INTEGER
        !            51: *>          The number of rows of the matrix Q. M >= 0.
        !            52: *> \endverbatim
        !            53: *>
        !            54: *> \param[in] N
        !            55: *> \verbatim
        !            56: *>          N is INTEGER
        !            57: *>          The number of columns of the matrix Q. N >= M.
        !            58: *> \endverbatim
        !            59: *>
        !            60: *> \param[in] K
        !            61: *> \verbatim
        !            62: *>          K is INTEGER
        !            63: *>          The number of elementary reflectors whose product defines the
        !            64: *>          matrix Q. M >= K >= 0.
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in,out] A
        !            68: *> \verbatim
        !            69: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            70: *>          On entry, the i-th row must contain the vector which defines
        !            71: *>          the elementary reflector H(i), for i = 1,2,...,k, as returned
        !            72: *>          by DGELQF in the first k rows of its array argument A.
        !            73: *>          On exit, the M-by-N matrix Q.
        !            74: *> \endverbatim
        !            75: *>
        !            76: *> \param[in] LDA
        !            77: *> \verbatim
        !            78: *>          LDA is INTEGER
        !            79: *>          The first dimension of the array A. LDA >= max(1,M).
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in] TAU
        !            83: *> \verbatim
        !            84: *>          TAU is DOUBLE PRECISION array, dimension (K)
        !            85: *>          TAU(i) must contain the scalar factor of the elementary
        !            86: *>          reflector H(i), as returned by DGELQF.
        !            87: *> \endverbatim
        !            88: *>
        !            89: *> \param[out] WORK
        !            90: *> \verbatim
        !            91: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            92: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            93: *> \endverbatim
        !            94: *>
        !            95: *> \param[in] LWORK
        !            96: *> \verbatim
        !            97: *>          LWORK is INTEGER
        !            98: *>          The dimension of the array WORK. LWORK >= max(1,M).
        !            99: *>          For optimum performance LWORK >= M*NB, where NB is
        !           100: *>          the optimal blocksize.
        !           101: *>
        !           102: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           103: *>          only calculates the optimal size of the WORK array, returns
        !           104: *>          this value as the first entry of the WORK array, and no error
        !           105: *>          message related to LWORK is issued by XERBLA.
        !           106: *> \endverbatim
        !           107: *>
        !           108: *> \param[out] INFO
        !           109: *> \verbatim
        !           110: *>          INFO is INTEGER
        !           111: *>          = 0:  successful exit
        !           112: *>          < 0:  if INFO = -i, the i-th argument has an illegal value
        !           113: *> \endverbatim
        !           114: *
        !           115: *  Authors:
        !           116: *  ========
        !           117: *
        !           118: *> \author Univ. of Tennessee 
        !           119: *> \author Univ. of California Berkeley 
        !           120: *> \author Univ. of Colorado Denver 
        !           121: *> \author NAG Ltd. 
        !           122: *
        !           123: *> \date November 2011
        !           124: *
        !           125: *> \ingroup doubleOTHERcomputational
        !           126: *
        !           127: *  =====================================================================
1.1       bertrand  128:       SUBROUTINE DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
                    129: *
1.9     ! bertrand  130: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  131: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    132: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  133: *     November 2011
1.1       bertrand  134: *
                    135: *     .. Scalar Arguments ..
                    136:       INTEGER            INFO, K, LDA, LWORK, M, N
                    137: *     ..
                    138: *     .. Array Arguments ..
                    139:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                    140: *     ..
                    141: *
                    142: *  =====================================================================
                    143: *
                    144: *     .. Parameters ..
                    145:       DOUBLE PRECISION   ZERO
                    146:       PARAMETER          ( ZERO = 0.0D+0 )
                    147: *     ..
                    148: *     .. Local Scalars ..
                    149:       LOGICAL            LQUERY
                    150:       INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
                    151:      $                   LWKOPT, NB, NBMIN, NX
                    152: *     ..
                    153: *     .. External Subroutines ..
                    154:       EXTERNAL           DLARFB, DLARFT, DORGL2, XERBLA
                    155: *     ..
                    156: *     .. Intrinsic Functions ..
                    157:       INTRINSIC          MAX, MIN
                    158: *     ..
                    159: *     .. External Functions ..
                    160:       INTEGER            ILAENV
                    161:       EXTERNAL           ILAENV
                    162: *     ..
                    163: *     .. Executable Statements ..
                    164: *
                    165: *     Test the input arguments
                    166: *
                    167:       INFO = 0
                    168:       NB = ILAENV( 1, 'DORGLQ', ' ', M, N, K, -1 )
                    169:       LWKOPT = MAX( 1, M )*NB
                    170:       WORK( 1 ) = LWKOPT
                    171:       LQUERY = ( LWORK.EQ.-1 )
                    172:       IF( M.LT.0 ) THEN
                    173:          INFO = -1
                    174:       ELSE IF( N.LT.M ) THEN
                    175:          INFO = -2
                    176:       ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
                    177:          INFO = -3
                    178:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    179:          INFO = -5
                    180:       ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
                    181:          INFO = -8
                    182:       END IF
                    183:       IF( INFO.NE.0 ) THEN
                    184:          CALL XERBLA( 'DORGLQ', -INFO )
                    185:          RETURN
                    186:       ELSE IF( LQUERY ) THEN
                    187:          RETURN
                    188:       END IF
                    189: *
                    190: *     Quick return if possible
                    191: *
                    192:       IF( M.LE.0 ) THEN
                    193:          WORK( 1 ) = 1
                    194:          RETURN
                    195:       END IF
                    196: *
                    197:       NBMIN = 2
                    198:       NX = 0
                    199:       IWS = M
                    200:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
                    201: *
                    202: *        Determine when to cross over from blocked to unblocked code.
                    203: *
                    204:          NX = MAX( 0, ILAENV( 3, 'DORGLQ', ' ', M, N, K, -1 ) )
                    205:          IF( NX.LT.K ) THEN
                    206: *
                    207: *           Determine if workspace is large enough for blocked code.
                    208: *
                    209:             LDWORK = M
                    210:             IWS = LDWORK*NB
                    211:             IF( LWORK.LT.IWS ) THEN
                    212: *
                    213: *              Not enough workspace to use optimal NB:  reduce NB and
                    214: *              determine the minimum value of NB.
                    215: *
                    216:                NB = LWORK / LDWORK
                    217:                NBMIN = MAX( 2, ILAENV( 2, 'DORGLQ', ' ', M, N, K, -1 ) )
                    218:             END IF
                    219:          END IF
                    220:       END IF
                    221: *
                    222:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
                    223: *
                    224: *        Use blocked code after the last block.
                    225: *        The first kk rows are handled by the block method.
                    226: *
                    227:          KI = ( ( K-NX-1 ) / NB )*NB
                    228:          KK = MIN( K, KI+NB )
                    229: *
                    230: *        Set A(kk+1:m,1:kk) to zero.
                    231: *
                    232:          DO 20 J = 1, KK
                    233:             DO 10 I = KK + 1, M
                    234:                A( I, J ) = ZERO
                    235:    10       CONTINUE
                    236:    20    CONTINUE
                    237:       ELSE
                    238:          KK = 0
                    239:       END IF
                    240: *
                    241: *     Use unblocked code for the last or only block.
                    242: *
                    243:       IF( KK.LT.M )
                    244:      $   CALL DORGL2( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA,
                    245:      $                TAU( KK+1 ), WORK, IINFO )
                    246: *
                    247:       IF( KK.GT.0 ) THEN
                    248: *
                    249: *        Use blocked code
                    250: *
                    251:          DO 50 I = KI + 1, 1, -NB
                    252:             IB = MIN( NB, K-I+1 )
                    253:             IF( I+IB.LE.M ) THEN
                    254: *
                    255: *              Form the triangular factor of the block reflector
                    256: *              H = H(i) H(i+1) . . . H(i+ib-1)
                    257: *
                    258:                CALL DLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
                    259:      $                      LDA, TAU( I ), WORK, LDWORK )
                    260: *
1.8       bertrand  261: *              Apply H**T to A(i+ib:m,i:n) from the right
1.1       bertrand  262: *
                    263:                CALL DLARFB( 'Right', 'Transpose', 'Forward', 'Rowwise',
                    264:      $                      M-I-IB+1, N-I+1, IB, A( I, I ), LDA, WORK,
                    265:      $                      LDWORK, A( I+IB, I ), LDA, WORK( IB+1 ),
                    266:      $                      LDWORK )
                    267:             END IF
                    268: *
1.8       bertrand  269: *           Apply H**T to columns i:n of current block
1.1       bertrand  270: *
                    271:             CALL DORGL2( IB, N-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
                    272:      $                   IINFO )
                    273: *
                    274: *           Set columns 1:i-1 of current block to zero
                    275: *
                    276:             DO 40 J = 1, I - 1
                    277:                DO 30 L = I, I + IB - 1
                    278:                   A( L, J ) = ZERO
                    279:    30          CONTINUE
                    280:    40       CONTINUE
                    281:    50    CONTINUE
                    282:       END IF
                    283: *
                    284:       WORK( 1 ) = IWS
                    285:       RETURN
                    286: *
                    287: *     End of DORGLQ
                    288: *
                    289:       END

CVSweb interface <joel.bertrand@systella.fr>