Annotation of rpl/lapack/lapack/dorglq.f, revision 1.18

1.9       bertrand    1: *> \brief \b DORGLQ
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DORGLQ + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorglq.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorglq.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorglq.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
1.15      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, K, LDA, LWORK, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.15      bertrand   29: *
1.9       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DORGLQ generates an M-by-N real matrix Q with orthonormal rows,
                     37: *> which is defined as the first M rows of a product of K elementary
                     38: *> reflectors of order N
                     39: *>
                     40: *>       Q  =  H(k) . . . H(2) H(1)
                     41: *>
                     42: *> as returned by DGELQF.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] M
                     49: *> \verbatim
                     50: *>          M is INTEGER
                     51: *>          The number of rows of the matrix Q. M >= 0.
                     52: *> \endverbatim
                     53: *>
                     54: *> \param[in] N
                     55: *> \verbatim
                     56: *>          N is INTEGER
                     57: *>          The number of columns of the matrix Q. N >= M.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] K
                     61: *> \verbatim
                     62: *>          K is INTEGER
                     63: *>          The number of elementary reflectors whose product defines the
                     64: *>          matrix Q. M >= K >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in,out] A
                     68: *> \verbatim
                     69: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     70: *>          On entry, the i-th row must contain the vector which defines
                     71: *>          the elementary reflector H(i), for i = 1,2,...,k, as returned
                     72: *>          by DGELQF in the first k rows of its array argument A.
                     73: *>          On exit, the M-by-N matrix Q.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] LDA
                     77: *> \verbatim
                     78: *>          LDA is INTEGER
                     79: *>          The first dimension of the array A. LDA >= max(1,M).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] TAU
                     83: *> \verbatim
                     84: *>          TAU is DOUBLE PRECISION array, dimension (K)
                     85: *>          TAU(i) must contain the scalar factor of the elementary
                     86: *>          reflector H(i), as returned by DGELQF.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[out] WORK
                     90: *> \verbatim
                     91: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     92: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] LWORK
                     96: *> \verbatim
                     97: *>          LWORK is INTEGER
                     98: *>          The dimension of the array WORK. LWORK >= max(1,M).
                     99: *>          For optimum performance LWORK >= M*NB, where NB is
                    100: *>          the optimal blocksize.
                    101: *>
                    102: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    103: *>          only calculates the optimal size of the WORK array, returns
                    104: *>          this value as the first entry of the WORK array, and no error
                    105: *>          message related to LWORK is issued by XERBLA.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[out] INFO
                    109: *> \verbatim
                    110: *>          INFO is INTEGER
                    111: *>          = 0:  successful exit
                    112: *>          < 0:  if INFO = -i, the i-th argument has an illegal value
                    113: *> \endverbatim
                    114: *
                    115: *  Authors:
                    116: *  ========
                    117: *
1.15      bertrand  118: *> \author Univ. of Tennessee
                    119: *> \author Univ. of California Berkeley
                    120: *> \author Univ. of Colorado Denver
                    121: *> \author NAG Ltd.
1.9       bertrand  122: *
                    123: *> \ingroup doubleOTHERcomputational
                    124: *
                    125: *  =====================================================================
1.1       bertrand  126:       SUBROUTINE DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
                    127: *
1.18    ! bertrand  128: *  -- LAPACK computational routine --
1.1       bertrand  129: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    130: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    131: *
                    132: *     .. Scalar Arguments ..
                    133:       INTEGER            INFO, K, LDA, LWORK, M, N
                    134: *     ..
                    135: *     .. Array Arguments ..
                    136:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                    137: *     ..
                    138: *
                    139: *  =====================================================================
                    140: *
                    141: *     .. Parameters ..
                    142:       DOUBLE PRECISION   ZERO
                    143:       PARAMETER          ( ZERO = 0.0D+0 )
                    144: *     ..
                    145: *     .. Local Scalars ..
                    146:       LOGICAL            LQUERY
                    147:       INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
                    148:      $                   LWKOPT, NB, NBMIN, NX
                    149: *     ..
                    150: *     .. External Subroutines ..
                    151:       EXTERNAL           DLARFB, DLARFT, DORGL2, XERBLA
                    152: *     ..
                    153: *     .. Intrinsic Functions ..
                    154:       INTRINSIC          MAX, MIN
                    155: *     ..
                    156: *     .. External Functions ..
                    157:       INTEGER            ILAENV
                    158:       EXTERNAL           ILAENV
                    159: *     ..
                    160: *     .. Executable Statements ..
                    161: *
                    162: *     Test the input arguments
                    163: *
                    164:       INFO = 0
                    165:       NB = ILAENV( 1, 'DORGLQ', ' ', M, N, K, -1 )
                    166:       LWKOPT = MAX( 1, M )*NB
                    167:       WORK( 1 ) = LWKOPT
                    168:       LQUERY = ( LWORK.EQ.-1 )
                    169:       IF( M.LT.0 ) THEN
                    170:          INFO = -1
                    171:       ELSE IF( N.LT.M ) THEN
                    172:          INFO = -2
                    173:       ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
                    174:          INFO = -3
                    175:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    176:          INFO = -5
                    177:       ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
                    178:          INFO = -8
                    179:       END IF
                    180:       IF( INFO.NE.0 ) THEN
                    181:          CALL XERBLA( 'DORGLQ', -INFO )
                    182:          RETURN
                    183:       ELSE IF( LQUERY ) THEN
                    184:          RETURN
                    185:       END IF
                    186: *
                    187: *     Quick return if possible
                    188: *
                    189:       IF( M.LE.0 ) THEN
                    190:          WORK( 1 ) = 1
                    191:          RETURN
                    192:       END IF
                    193: *
                    194:       NBMIN = 2
                    195:       NX = 0
                    196:       IWS = M
                    197:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
                    198: *
                    199: *        Determine when to cross over from blocked to unblocked code.
                    200: *
                    201:          NX = MAX( 0, ILAENV( 3, 'DORGLQ', ' ', M, N, K, -1 ) )
                    202:          IF( NX.LT.K ) THEN
                    203: *
                    204: *           Determine if workspace is large enough for blocked code.
                    205: *
                    206:             LDWORK = M
                    207:             IWS = LDWORK*NB
                    208:             IF( LWORK.LT.IWS ) THEN
                    209: *
                    210: *              Not enough workspace to use optimal NB:  reduce NB and
                    211: *              determine the minimum value of NB.
                    212: *
                    213:                NB = LWORK / LDWORK
                    214:                NBMIN = MAX( 2, ILAENV( 2, 'DORGLQ', ' ', M, N, K, -1 ) )
                    215:             END IF
                    216:          END IF
                    217:       END IF
                    218: *
                    219:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
                    220: *
                    221: *        Use blocked code after the last block.
                    222: *        The first kk rows are handled by the block method.
                    223: *
                    224:          KI = ( ( K-NX-1 ) / NB )*NB
                    225:          KK = MIN( K, KI+NB )
                    226: *
                    227: *        Set A(kk+1:m,1:kk) to zero.
                    228: *
                    229:          DO 20 J = 1, KK
                    230:             DO 10 I = KK + 1, M
                    231:                A( I, J ) = ZERO
                    232:    10       CONTINUE
                    233:    20    CONTINUE
                    234:       ELSE
                    235:          KK = 0
                    236:       END IF
                    237: *
                    238: *     Use unblocked code for the last or only block.
                    239: *
                    240:       IF( KK.LT.M )
                    241:      $   CALL DORGL2( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA,
                    242:      $                TAU( KK+1 ), WORK, IINFO )
                    243: *
                    244:       IF( KK.GT.0 ) THEN
                    245: *
                    246: *        Use blocked code
                    247: *
                    248:          DO 50 I = KI + 1, 1, -NB
                    249:             IB = MIN( NB, K-I+1 )
                    250:             IF( I+IB.LE.M ) THEN
                    251: *
                    252: *              Form the triangular factor of the block reflector
                    253: *              H = H(i) H(i+1) . . . H(i+ib-1)
                    254: *
                    255:                CALL DLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
                    256:      $                      LDA, TAU( I ), WORK, LDWORK )
                    257: *
1.8       bertrand  258: *              Apply H**T to A(i+ib:m,i:n) from the right
1.1       bertrand  259: *
                    260:                CALL DLARFB( 'Right', 'Transpose', 'Forward', 'Rowwise',
                    261:      $                      M-I-IB+1, N-I+1, IB, A( I, I ), LDA, WORK,
                    262:      $                      LDWORK, A( I+IB, I ), LDA, WORK( IB+1 ),
                    263:      $                      LDWORK )
                    264:             END IF
                    265: *
1.8       bertrand  266: *           Apply H**T to columns i:n of current block
1.1       bertrand  267: *
                    268:             CALL DORGL2( IB, N-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
                    269:      $                   IINFO )
                    270: *
                    271: *           Set columns 1:i-1 of current block to zero
                    272: *
                    273:             DO 40 J = 1, I - 1
                    274:                DO 30 L = I, I + IB - 1
                    275:                   A( L, J ) = ZERO
                    276:    30          CONTINUE
                    277:    40       CONTINUE
                    278:    50    CONTINUE
                    279:       END IF
                    280: *
                    281:       WORK( 1 ) = IWS
                    282:       RETURN
                    283: *
                    284: *     End of DORGLQ
                    285: *
                    286:       END

CVSweb interface <joel.bertrand@systella.fr>