File:  [local] / rpl / lapack / lapack / dorgbr.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:02 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DORGBR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DORGBR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgbr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgbr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgbr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          VECT
   25: *       INTEGER            INFO, K, LDA, LWORK, M, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DORGBR generates one of the real orthogonal matrices Q or P**T
   38: *> determined by DGEBRD when reducing a real matrix A to bidiagonal
   39: *> form: A = Q * B * P**T.  Q and P**T are defined as products of
   40: *> elementary reflectors H(i) or G(i) respectively.
   41: *>
   42: *> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
   43: *> is of order M:
   44: *> if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
   45: *> columns of Q, where m >= n >= k;
   46: *> if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
   47: *> M-by-M matrix.
   48: *>
   49: *> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
   50: *> is of order N:
   51: *> if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
   52: *> rows of P**T, where n >= m >= k;
   53: *> if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
   54: *> an N-by-N matrix.
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] VECT
   61: *> \verbatim
   62: *>          VECT is CHARACTER*1
   63: *>          Specifies whether the matrix Q or the matrix P**T is
   64: *>          required, as defined in the transformation applied by DGEBRD:
   65: *>          = 'Q':  generate Q;
   66: *>          = 'P':  generate P**T.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] M
   70: *> \verbatim
   71: *>          M is INTEGER
   72: *>          The number of rows of the matrix Q or P**T to be returned.
   73: *>          M >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The number of columns of the matrix Q or P**T to be returned.
   80: *>          N >= 0.
   81: *>          If VECT = 'Q', M >= N >= min(M,K);
   82: *>          if VECT = 'P', N >= M >= min(N,K).
   83: *> \endverbatim
   84: *>
   85: *> \param[in] K
   86: *> \verbatim
   87: *>          K is INTEGER
   88: *>          If VECT = 'Q', the number of columns in the original M-by-K
   89: *>          matrix reduced by DGEBRD.
   90: *>          If VECT = 'P', the number of rows in the original K-by-N
   91: *>          matrix reduced by DGEBRD.
   92: *>          K >= 0.
   93: *> \endverbatim
   94: *>
   95: *> \param[in,out] A
   96: *> \verbatim
   97: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   98: *>          On entry, the vectors which define the elementary reflectors,
   99: *>          as returned by DGEBRD.
  100: *>          On exit, the M-by-N matrix Q or P**T.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A. LDA >= max(1,M).
  107: *> \endverbatim
  108: *>
  109: *> \param[in] TAU
  110: *> \verbatim
  111: *>          TAU is DOUBLE PRECISION array, dimension
  112: *>                                (min(M,K)) if VECT = 'Q'
  113: *>                                (min(N,K)) if VECT = 'P'
  114: *>          TAU(i) must contain the scalar factor of the elementary
  115: *>          reflector H(i) or G(i), which determines Q or P**T, as
  116: *>          returned by DGEBRD in its array argument TAUQ or TAUP.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] WORK
  120: *> \verbatim
  121: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  122: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LWORK
  126: *> \verbatim
  127: *>          LWORK is INTEGER
  128: *>          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
  129: *>          For optimum performance LWORK >= min(M,N)*NB, where NB
  130: *>          is the optimal blocksize.
  131: *>
  132: *>          If LWORK = -1, then a workspace query is assumed; the routine
  133: *>          only calculates the optimal size of the WORK array, returns
  134: *>          this value as the first entry of the WORK array, and no error
  135: *>          message related to LWORK is issued by XERBLA.
  136: *> \endverbatim
  137: *>
  138: *> \param[out] INFO
  139: *> \verbatim
  140: *>          INFO is INTEGER
  141: *>          = 0:  successful exit
  142: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  143: *> \endverbatim
  144: *
  145: *  Authors:
  146: *  ========
  147: *
  148: *> \author Univ. of Tennessee
  149: *> \author Univ. of California Berkeley
  150: *> \author Univ. of Colorado Denver
  151: *> \author NAG Ltd.
  152: *
  153: *> \ingroup doubleGBcomputational
  154: *
  155: *  =====================================================================
  156:       SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  157: *
  158: *  -- LAPACK computational routine --
  159: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  160: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  161: *
  162: *     .. Scalar Arguments ..
  163:       CHARACTER          VECT
  164:       INTEGER            INFO, K, LDA, LWORK, M, N
  165: *     ..
  166: *     .. Array Arguments ..
  167:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
  168: *     ..
  169: *
  170: *  =====================================================================
  171: *
  172: *     .. Parameters ..
  173:       DOUBLE PRECISION   ZERO, ONE
  174:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  175: *     ..
  176: *     .. Local Scalars ..
  177:       LOGICAL            LQUERY, WANTQ
  178:       INTEGER            I, IINFO, J, LWKOPT, MN
  179: *     ..
  180: *     .. External Functions ..
  181:       LOGICAL            LSAME
  182:       EXTERNAL           LSAME
  183: *     ..
  184: *     .. External Subroutines ..
  185:       EXTERNAL           DORGLQ, DORGQR, XERBLA
  186: *     ..
  187: *     .. Intrinsic Functions ..
  188:       INTRINSIC          MAX, MIN
  189: *     ..
  190: *     .. Executable Statements ..
  191: *
  192: *     Test the input arguments
  193: *
  194:       INFO = 0
  195:       WANTQ = LSAME( VECT, 'Q' )
  196:       MN = MIN( M, N )
  197:       LQUERY = ( LWORK.EQ.-1 )
  198:       IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
  199:          INFO = -1
  200:       ELSE IF( M.LT.0 ) THEN
  201:          INFO = -2
  202:       ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
  203:      $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
  204:      $         MIN( N, K ) ) ) ) THEN
  205:          INFO = -3
  206:       ELSE IF( K.LT.0 ) THEN
  207:          INFO = -4
  208:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  209:          INFO = -6
  210:       ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
  211:          INFO = -9
  212:       END IF
  213: *
  214:       IF( INFO.EQ.0 ) THEN
  215:          WORK( 1 ) = 1
  216:          IF( WANTQ ) THEN
  217:             IF( M.GE.K ) THEN
  218:                CALL DORGQR( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
  219:             ELSE
  220:                IF( M.GT.1 ) THEN
  221:                   CALL DORGQR( M-1, M-1, M-1, A, LDA, TAU, WORK, -1,
  222:      $                         IINFO )
  223:                END IF
  224:             END IF
  225:          ELSE
  226:             IF( K.LT.N ) THEN
  227:                CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
  228:             ELSE
  229:                IF( N.GT.1 ) THEN
  230:                   CALL DORGLQ( N-1, N-1, N-1, A, LDA, TAU, WORK, -1,
  231:      $                         IINFO )
  232:                END IF
  233:             END IF
  234:          END IF
  235:          LWKOPT = INT( WORK( 1 ) )
  236:          LWKOPT = MAX (LWKOPT, MN)
  237:       END IF
  238: *
  239:       IF( INFO.NE.0 ) THEN
  240:          CALL XERBLA( 'DORGBR', -INFO )
  241:          RETURN
  242:       ELSE IF( LQUERY ) THEN
  243:          WORK( 1 ) = LWKOPT
  244:          RETURN
  245:       END IF
  246: *
  247: *     Quick return if possible
  248: *
  249:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  250:          WORK( 1 ) = 1
  251:          RETURN
  252:       END IF
  253: *
  254:       IF( WANTQ ) THEN
  255: *
  256: *        Form Q, determined by a call to DGEBRD to reduce an m-by-k
  257: *        matrix
  258: *
  259:          IF( M.GE.K ) THEN
  260: *
  261: *           If m >= k, assume m >= n >= k
  262: *
  263:             CALL DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
  264: *
  265:          ELSE
  266: *
  267: *           If m < k, assume m = n
  268: *
  269: *           Shift the vectors which define the elementary reflectors one
  270: *           column to the right, and set the first row and column of Q
  271: *           to those of the unit matrix
  272: *
  273:             DO 20 J = M, 2, -1
  274:                A( 1, J ) = ZERO
  275:                DO 10 I = J + 1, M
  276:                   A( I, J ) = A( I, J-1 )
  277:    10          CONTINUE
  278:    20       CONTINUE
  279:             A( 1, 1 ) = ONE
  280:             DO 30 I = 2, M
  281:                A( I, 1 ) = ZERO
  282:    30       CONTINUE
  283:             IF( M.GT.1 ) THEN
  284: *
  285: *              Form Q(2:m,2:m)
  286: *
  287:                CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
  288:      $                      LWORK, IINFO )
  289:             END IF
  290:          END IF
  291:       ELSE
  292: *
  293: *        Form P**T, determined by a call to DGEBRD to reduce a k-by-n
  294: *        matrix
  295: *
  296:          IF( K.LT.N ) THEN
  297: *
  298: *           If k < n, assume k <= m <= n
  299: *
  300:             CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
  301: *
  302:          ELSE
  303: *
  304: *           If k >= n, assume m = n
  305: *
  306: *           Shift the vectors which define the elementary reflectors one
  307: *           row downward, and set the first row and column of P**T to
  308: *           those of the unit matrix
  309: *
  310:             A( 1, 1 ) = ONE
  311:             DO 40 I = 2, N
  312:                A( I, 1 ) = ZERO
  313:    40       CONTINUE
  314:             DO 60 J = 2, N
  315:                DO 50 I = J - 1, 2, -1
  316:                   A( I, J ) = A( I-1, J )
  317:    50          CONTINUE
  318:                A( 1, J ) = ZERO
  319:    60       CONTINUE
  320:             IF( N.GT.1 ) THEN
  321: *
  322: *              Form P**T(2:n,2:n)
  323: *
  324:                CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
  325:      $                      LWORK, IINFO )
  326:             END IF
  327:          END IF
  328:       END IF
  329:       WORK( 1 ) = LWKOPT
  330:       RETURN
  331: *
  332: *     End of DORGBR
  333: *
  334:       END

CVSweb interface <joel.bertrand@systella.fr>