File:  [local] / rpl / lapack / lapack / dorgbr.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:24 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b DORGBR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DORGBR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgbr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgbr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgbr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          VECT
   25: *       INTEGER            INFO, K, LDA, LWORK, M, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DORGBR generates one of the real orthogonal matrices Q or P**T
   38: *> determined by DGEBRD when reducing a real matrix A to bidiagonal
   39: *> form: A = Q * B * P**T.  Q and P**T are defined as products of
   40: *> elementary reflectors H(i) or G(i) respectively.
   41: *>
   42: *> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
   43: *> is of order M:
   44: *> if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
   45: *> columns of Q, where m >= n >= k;
   46: *> if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
   47: *> M-by-M matrix.
   48: *>
   49: *> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
   50: *> is of order N:
   51: *> if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
   52: *> rows of P**T, where n >= m >= k;
   53: *> if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
   54: *> an N-by-N matrix.
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] VECT
   61: *> \verbatim
   62: *>          VECT is CHARACTER*1
   63: *>          Specifies whether the matrix Q or the matrix P**T is
   64: *>          required, as defined in the transformation applied by DGEBRD:
   65: *>          = 'Q':  generate Q;
   66: *>          = 'P':  generate P**T.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] M
   70: *> \verbatim
   71: *>          M is INTEGER
   72: *>          The number of rows of the matrix Q or P**T to be returned.
   73: *>          M >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The number of columns of the matrix Q or P**T to be returned.
   80: *>          N >= 0.
   81: *>          If VECT = 'Q', M >= N >= min(M,K);
   82: *>          if VECT = 'P', N >= M >= min(N,K).
   83: *> \endverbatim
   84: *>
   85: *> \param[in] K
   86: *> \verbatim
   87: *>          K is INTEGER
   88: *>          If VECT = 'Q', the number of columns in the original M-by-K
   89: *>          matrix reduced by DGEBRD.
   90: *>          If VECT = 'P', the number of rows in the original K-by-N
   91: *>          matrix reduced by DGEBRD.
   92: *>          K >= 0.
   93: *> \endverbatim
   94: *>
   95: *> \param[in,out] A
   96: *> \verbatim
   97: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   98: *>          On entry, the vectors which define the elementary reflectors,
   99: *>          as returned by DGEBRD.
  100: *>          On exit, the M-by-N matrix Q or P**T.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A. LDA >= max(1,M).
  107: *> \endverbatim
  108: *>
  109: *> \param[in] TAU
  110: *> \verbatim
  111: *>          TAU is DOUBLE PRECISION array, dimension
  112: *>                                (min(M,K)) if VECT = 'Q'
  113: *>                                (min(N,K)) if VECT = 'P'
  114: *>          TAU(i) must contain the scalar factor of the elementary
  115: *>          reflector H(i) or G(i), which determines Q or P**T, as
  116: *>          returned by DGEBRD in its array argument TAUQ or TAUP.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] WORK
  120: *> \verbatim
  121: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  122: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LWORK
  126: *> \verbatim
  127: *>          LWORK is INTEGER
  128: *>          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
  129: *>          For optimum performance LWORK >= min(M,N)*NB, where NB
  130: *>          is the optimal blocksize.
  131: *>
  132: *>          If LWORK = -1, then a workspace query is assumed; the routine
  133: *>          only calculates the optimal size of the WORK array, returns
  134: *>          this value as the first entry of the WORK array, and no error
  135: *>          message related to LWORK is issued by XERBLA.
  136: *> \endverbatim
  137: *>
  138: *> \param[out] INFO
  139: *> \verbatim
  140: *>          INFO is INTEGER
  141: *>          = 0:  successful exit
  142: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  143: *> \endverbatim
  144: *
  145: *  Authors:
  146: *  ========
  147: *
  148: *> \author Univ. of Tennessee 
  149: *> \author Univ. of California Berkeley 
  150: *> \author Univ. of Colorado Denver 
  151: *> \author NAG Ltd. 
  152: *
  153: *> \date April 2012
  154: *
  155: *> \ingroup doubleGBcomputational
  156: *
  157: *  =====================================================================
  158:       SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  159: *
  160: *  -- LAPACK computational routine (version 3.4.1) --
  161: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  162: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163: *     April 2012
  164: *
  165: *     .. Scalar Arguments ..
  166:       CHARACTER          VECT
  167:       INTEGER            INFO, K, LDA, LWORK, M, N
  168: *     ..
  169: *     .. Array Arguments ..
  170:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
  171: *     ..
  172: *
  173: *  =====================================================================
  174: *
  175: *     .. Parameters ..
  176:       DOUBLE PRECISION   ZERO, ONE
  177:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  178: *     ..
  179: *     .. Local Scalars ..
  180:       LOGICAL            LQUERY, WANTQ
  181:       INTEGER            I, IINFO, J, LWKOPT, MN
  182: *     ..
  183: *     .. External Functions ..
  184:       LOGICAL            LSAME
  185:       INTEGER            ILAENV
  186:       EXTERNAL           LSAME, ILAENV
  187: *     ..
  188: *     .. External Subroutines ..
  189:       EXTERNAL           DORGLQ, DORGQR, XERBLA
  190: *     ..
  191: *     .. Intrinsic Functions ..
  192:       INTRINSIC          MAX, MIN
  193: *     ..
  194: *     .. Executable Statements ..
  195: *
  196: *     Test the input arguments
  197: *
  198:       INFO = 0
  199:       WANTQ = LSAME( VECT, 'Q' )
  200:       MN = MIN( M, N )
  201:       LQUERY = ( LWORK.EQ.-1 )
  202:       IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
  203:          INFO = -1
  204:       ELSE IF( M.LT.0 ) THEN
  205:          INFO = -2
  206:       ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
  207:      $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
  208:      $         MIN( N, K ) ) ) ) THEN
  209:          INFO = -3
  210:       ELSE IF( K.LT.0 ) THEN
  211:          INFO = -4
  212:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  213:          INFO = -6
  214:       ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
  215:          INFO = -9
  216:       END IF
  217: *
  218:       IF( INFO.EQ.0 ) THEN
  219:          WORK( 1 ) = 1
  220:          IF( WANTQ ) THEN
  221:             IF( M.GE.K ) THEN
  222:                CALL DORGQR( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
  223:             ELSE
  224:                IF( M.GT.1 ) THEN
  225:                   CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
  226:      $                         -1, IINFO )
  227:                END IF
  228:             END IF
  229:          ELSE
  230:             IF( K.LT.N ) THEN
  231:                CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
  232:             ELSE
  233:                IF( N.GT.1 ) THEN
  234:                   CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
  235:      $                         -1, IINFO )
  236:                END IF
  237:             END IF
  238:          END IF
  239:          LWKOPT = WORK( 1 )
  240:          LWKOPT = MAX (LWKOPT, MN)
  241:       END IF
  242: *
  243:       IF( INFO.NE.0 ) THEN
  244:          CALL XERBLA( 'DORGBR', -INFO )
  245:          RETURN
  246:       ELSE IF( LQUERY ) THEN
  247:          WORK( 1 ) = LWKOPT
  248:          RETURN
  249:       END IF
  250: *
  251: *     Quick return if possible
  252: *
  253:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  254:          WORK( 1 ) = 1
  255:          RETURN
  256:       END IF
  257: *
  258:       IF( WANTQ ) THEN
  259: *
  260: *        Form Q, determined by a call to DGEBRD to reduce an m-by-k
  261: *        matrix
  262: *
  263:          IF( M.GE.K ) THEN
  264: *
  265: *           If m >= k, assume m >= n >= k
  266: *
  267:             CALL DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
  268: *
  269:          ELSE
  270: *
  271: *           If m < k, assume m = n
  272: *
  273: *           Shift the vectors which define the elementary reflectors one
  274: *           column to the right, and set the first row and column of Q
  275: *           to those of the unit matrix
  276: *
  277:             DO 20 J = M, 2, -1
  278:                A( 1, J ) = ZERO
  279:                DO 10 I = J + 1, M
  280:                   A( I, J ) = A( I, J-1 )
  281:    10          CONTINUE
  282:    20       CONTINUE
  283:             A( 1, 1 ) = ONE
  284:             DO 30 I = 2, M
  285:                A( I, 1 ) = ZERO
  286:    30       CONTINUE
  287:             IF( M.GT.1 ) THEN
  288: *
  289: *              Form Q(2:m,2:m)
  290: *
  291:                CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
  292:      $                      LWORK, IINFO )
  293:             END IF
  294:          END IF
  295:       ELSE
  296: *
  297: *        Form P**T, determined by a call to DGEBRD to reduce a k-by-n
  298: *        matrix
  299: *
  300:          IF( K.LT.N ) THEN
  301: *
  302: *           If k < n, assume k <= m <= n
  303: *
  304:             CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
  305: *
  306:          ELSE
  307: *
  308: *           If k >= n, assume m = n
  309: *
  310: *           Shift the vectors which define the elementary reflectors one
  311: *           row downward, and set the first row and column of P**T to
  312: *           those of the unit matrix
  313: *
  314:             A( 1, 1 ) = ONE
  315:             DO 40 I = 2, N
  316:                A( I, 1 ) = ZERO
  317:    40       CONTINUE
  318:             DO 60 J = 2, N
  319:                DO 50 I = J - 1, 2, -1
  320:                   A( I, J ) = A( I-1, J )
  321:    50          CONTINUE
  322:                A( 1, J ) = ZERO
  323:    60       CONTINUE
  324:             IF( N.GT.1 ) THEN
  325: *
  326: *              Form P**T(2:n,2:n)
  327: *
  328:                CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
  329:      $                      LWORK, IINFO )
  330:             END IF
  331:          END IF
  332:       END IF
  333:       WORK( 1 ) = LWKOPT
  334:       RETURN
  335: *
  336: *     End of DORGBR
  337: *
  338:       END

CVSweb interface <joel.bertrand@systella.fr>