Annotation of rpl/lapack/lapack/dorgbr.f, revision 1.10

1.9       bertrand    1: *> \brief \b DORGBR
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DORGBR + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgbr.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgbr.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgbr.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          VECT
                     25: *       INTEGER            INFO, K, LDA, LWORK, M, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                     29: *       ..
                     30: *  
                     31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DORGBR generates one of the real orthogonal matrices Q or P**T
                     38: *> determined by DGEBRD when reducing a real matrix A to bidiagonal
                     39: *> form: A = Q * B * P**T.  Q and P**T are defined as products of
                     40: *> elementary reflectors H(i) or G(i) respectively.
                     41: *>
                     42: *> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
                     43: *> is of order M:
                     44: *> if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
                     45: *> columns of Q, where m >= n >= k;
                     46: *> if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
                     47: *> M-by-M matrix.
                     48: *>
                     49: *> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
                     50: *> is of order N:
                     51: *> if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
                     52: *> rows of P**T, where n >= m >= k;
                     53: *> if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
                     54: *> an N-by-N matrix.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] VECT
                     61: *> \verbatim
                     62: *>          VECT is CHARACTER*1
                     63: *>          Specifies whether the matrix Q or the matrix P**T is
                     64: *>          required, as defined in the transformation applied by DGEBRD:
                     65: *>          = 'Q':  generate Q;
                     66: *>          = 'P':  generate P**T.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] M
                     70: *> \verbatim
                     71: *>          M is INTEGER
                     72: *>          The number of rows of the matrix Q or P**T to be returned.
                     73: *>          M >= 0.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] N
                     77: *> \verbatim
                     78: *>          N is INTEGER
                     79: *>          The number of columns of the matrix Q or P**T to be returned.
                     80: *>          N >= 0.
                     81: *>          If VECT = 'Q', M >= N >= min(M,K);
                     82: *>          if VECT = 'P', N >= M >= min(N,K).
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] K
                     86: *> \verbatim
                     87: *>          K is INTEGER
                     88: *>          If VECT = 'Q', the number of columns in the original M-by-K
                     89: *>          matrix reduced by DGEBRD.
                     90: *>          If VECT = 'P', the number of rows in the original K-by-N
                     91: *>          matrix reduced by DGEBRD.
                     92: *>          K >= 0.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in,out] A
                     96: *> \verbatim
                     97: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     98: *>          On entry, the vectors which define the elementary reflectors,
                     99: *>          as returned by DGEBRD.
                    100: *>          On exit, the M-by-N matrix Q or P**T.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDA
                    104: *> \verbatim
                    105: *>          LDA is INTEGER
                    106: *>          The leading dimension of the array A. LDA >= max(1,M).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] TAU
                    110: *> \verbatim
                    111: *>          TAU is DOUBLE PRECISION array, dimension
                    112: *>                                (min(M,K)) if VECT = 'Q'
                    113: *>                                (min(N,K)) if VECT = 'P'
                    114: *>          TAU(i) must contain the scalar factor of the elementary
                    115: *>          reflector H(i) or G(i), which determines Q or P**T, as
                    116: *>          returned by DGEBRD in its array argument TAUQ or TAUP.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[out] WORK
                    120: *> \verbatim
                    121: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    122: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] LWORK
                    126: *> \verbatim
                    127: *>          LWORK is INTEGER
                    128: *>          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
                    129: *>          For optimum performance LWORK >= min(M,N)*NB, where NB
                    130: *>          is the optimal blocksize.
                    131: *>
                    132: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    133: *>          only calculates the optimal size of the WORK array, returns
                    134: *>          this value as the first entry of the WORK array, and no error
                    135: *>          message related to LWORK is issued by XERBLA.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] INFO
                    139: *> \verbatim
                    140: *>          INFO is INTEGER
                    141: *>          = 0:  successful exit
                    142: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    143: *> \endverbatim
                    144: *
                    145: *  Authors:
                    146: *  ========
                    147: *
                    148: *> \author Univ. of Tennessee 
                    149: *> \author Univ. of California Berkeley 
                    150: *> \author Univ. of Colorado Denver 
                    151: *> \author NAG Ltd. 
                    152: *
                    153: *> \date November 2011
                    154: *
                    155: *> \ingroup doubleGBcomputational
                    156: *
                    157: *  =====================================================================
1.1       bertrand  158:       SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
                    159: *
1.9       bertrand  160: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  161: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    162: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  163: *     November 2011
1.1       bertrand  164: *
                    165: *     .. Scalar Arguments ..
                    166:       CHARACTER          VECT
                    167:       INTEGER            INFO, K, LDA, LWORK, M, N
                    168: *     ..
                    169: *     .. Array Arguments ..
                    170:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                    171: *     ..
                    172: *
                    173: *  =====================================================================
                    174: *
                    175: *     .. Parameters ..
                    176:       DOUBLE PRECISION   ZERO, ONE
                    177:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    178: *     ..
                    179: *     .. Local Scalars ..
                    180:       LOGICAL            LQUERY, WANTQ
                    181:       INTEGER            I, IINFO, J, LWKOPT, MN, NB
                    182: *     ..
                    183: *     .. External Functions ..
                    184:       LOGICAL            LSAME
                    185:       INTEGER            ILAENV
                    186:       EXTERNAL           LSAME, ILAENV
                    187: *     ..
                    188: *     .. External Subroutines ..
                    189:       EXTERNAL           DORGLQ, DORGQR, XERBLA
                    190: *     ..
                    191: *     .. Intrinsic Functions ..
                    192:       INTRINSIC          MAX, MIN
                    193: *     ..
                    194: *     .. Executable Statements ..
                    195: *
                    196: *     Test the input arguments
                    197: *
                    198:       INFO = 0
                    199:       WANTQ = LSAME( VECT, 'Q' )
                    200:       MN = MIN( M, N )
                    201:       LQUERY = ( LWORK.EQ.-1 )
                    202:       IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
                    203:          INFO = -1
                    204:       ELSE IF( M.LT.0 ) THEN
                    205:          INFO = -2
                    206:       ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
                    207:      $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
                    208:      $         MIN( N, K ) ) ) ) THEN
                    209:          INFO = -3
                    210:       ELSE IF( K.LT.0 ) THEN
                    211:          INFO = -4
                    212:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    213:          INFO = -6
                    214:       ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
                    215:          INFO = -9
                    216:       END IF
                    217: *
                    218:       IF( INFO.EQ.0 ) THEN
1.9       bertrand  219:          WORK( 1 ) = 1
1.1       bertrand  220:          IF( WANTQ ) THEN
1.9       bertrand  221:             IF( M.GE.K ) THEN
                    222:                CALL DORGQR( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
                    223:             ELSE
                    224:                IF( M.GT.1 ) THEN
                    225:                   CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
                    226:      $                         -1, IINFO )
                    227:                END IF
                    228:             END IF
1.1       bertrand  229:          ELSE
1.9       bertrand  230:             IF( K.LT.N ) THEN
                    231:                CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
                    232:             ELSE
                    233:                IF( N.GT.1 ) THEN
                    234:                   CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
                    235:      $                         -1, IINFO )
                    236:                END IF
                    237:             END IF
1.1       bertrand  238:          END IF
1.9       bertrand  239:          LWKOPT = WORK( 1 )
1.1       bertrand  240:       END IF
                    241: *
                    242:       IF( INFO.NE.0 ) THEN
                    243:          CALL XERBLA( 'DORGBR', -INFO )
                    244:          RETURN
                    245:       ELSE IF( LQUERY ) THEN
                    246:          RETURN
                    247:       END IF
                    248: *
                    249: *     Quick return if possible
                    250: *
                    251:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    252:          WORK( 1 ) = 1
                    253:          RETURN
                    254:       END IF
                    255: *
                    256:       IF( WANTQ ) THEN
                    257: *
                    258: *        Form Q, determined by a call to DGEBRD to reduce an m-by-k
                    259: *        matrix
                    260: *
                    261:          IF( M.GE.K ) THEN
                    262: *
                    263: *           If m >= k, assume m >= n >= k
                    264: *
                    265:             CALL DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
                    266: *
                    267:          ELSE
                    268: *
                    269: *           If m < k, assume m = n
                    270: *
                    271: *           Shift the vectors which define the elementary reflectors one
                    272: *           column to the right, and set the first row and column of Q
                    273: *           to those of the unit matrix
                    274: *
                    275:             DO 20 J = M, 2, -1
                    276:                A( 1, J ) = ZERO
                    277:                DO 10 I = J + 1, M
                    278:                   A( I, J ) = A( I, J-1 )
                    279:    10          CONTINUE
                    280:    20       CONTINUE
                    281:             A( 1, 1 ) = ONE
                    282:             DO 30 I = 2, M
                    283:                A( I, 1 ) = ZERO
                    284:    30       CONTINUE
                    285:             IF( M.GT.1 ) THEN
                    286: *
                    287: *              Form Q(2:m,2:m)
                    288: *
                    289:                CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
                    290:      $                      LWORK, IINFO )
                    291:             END IF
                    292:          END IF
                    293:       ELSE
                    294: *
1.8       bertrand  295: *        Form P**T, determined by a call to DGEBRD to reduce a k-by-n
1.1       bertrand  296: *        matrix
                    297: *
                    298:          IF( K.LT.N ) THEN
                    299: *
                    300: *           If k < n, assume k <= m <= n
                    301: *
                    302:             CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
                    303: *
                    304:          ELSE
                    305: *
                    306: *           If k >= n, assume m = n
                    307: *
                    308: *           Shift the vectors which define the elementary reflectors one
1.8       bertrand  309: *           row downward, and set the first row and column of P**T to
1.1       bertrand  310: *           those of the unit matrix
                    311: *
                    312:             A( 1, 1 ) = ONE
                    313:             DO 40 I = 2, N
                    314:                A( I, 1 ) = ZERO
                    315:    40       CONTINUE
                    316:             DO 60 J = 2, N
                    317:                DO 50 I = J - 1, 2, -1
                    318:                   A( I, J ) = A( I-1, J )
                    319:    50          CONTINUE
                    320:                A( 1, J ) = ZERO
                    321:    60       CONTINUE
                    322:             IF( N.GT.1 ) THEN
                    323: *
1.8       bertrand  324: *              Form P**T(2:n,2:n)
1.1       bertrand  325: *
                    326:                CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
                    327:      $                      LWORK, IINFO )
                    328:             END IF
                    329:          END IF
                    330:       END IF
                    331:       WORK( 1 ) = LWKOPT
                    332:       RETURN
                    333: *
                    334: *     End of DORGBR
                    335: *
                    336:       END

CVSweb interface <joel.bertrand@systella.fr>