File:  [local] / rpl / lapack / lapack / dorcsd2by1.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:02 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DORCSD2BY1
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DORCSD2BY1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorcsd2by1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorcsd2by1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorcsd2by1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
   22: *                              X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
   23: *                              LDV1T, WORK, LWORK, IWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBU1, JOBU2, JOBV1T
   27: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
   28: *      $                   M, P, Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   THETA(*)
   32: *       DOUBLE PRECISION   U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
   33: *      $                   X11(LDX11,*), X21(LDX21,*)
   34: *       INTEGER            IWORK(*)
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *>\verbatim
   42: *>
   43: *> DORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
   44: *> orthonormal columns that has been partitioned into a 2-by-1 block
   45: *> structure:
   46: *>
   47: *>                                [  I1 0  0 ]
   48: *>                                [  0  C  0 ]
   49: *>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
   50: *>      X = [-----] = [---------] [----------] V1**T .
   51: *>          [ X21 ]   [    | U2 ] [  0  0  0 ]
   52: *>                                [  0  S  0 ]
   53: *>                                [  0  0  I2]
   54: *>
   55: *> X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P,
   56: *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
   57: *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
   58: *> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
   59: *> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
   60: *> \endverbatim
   61: *
   62: *  Arguments:
   63: *  ==========
   64: *
   65: *> \param[in] JOBU1
   66: *> \verbatim
   67: *>          JOBU1 is CHARACTER
   68: *>          = 'Y':      U1 is computed;
   69: *>          otherwise:  U1 is not computed.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] JOBU2
   73: *> \verbatim
   74: *>          JOBU2 is CHARACTER
   75: *>          = 'Y':      U2 is computed;
   76: *>          otherwise:  U2 is not computed.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] JOBV1T
   80: *> \verbatim
   81: *>          JOBV1T is CHARACTER
   82: *>          = 'Y':      V1T is computed;
   83: *>          otherwise:  V1T is not computed.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] M
   87: *> \verbatim
   88: *>          M is INTEGER
   89: *>          The number of rows in X.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] P
   93: *> \verbatim
   94: *>          P is INTEGER
   95: *>          The number of rows in X11. 0 <= P <= M.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] Q
   99: *> \verbatim
  100: *>          Q is INTEGER
  101: *>          The number of columns in X11 and X21. 0 <= Q <= M.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] X11
  105: *> \verbatim
  106: *>          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
  107: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] LDX11
  111: *> \verbatim
  112: *>          LDX11 is INTEGER
  113: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
  114: *> \endverbatim
  115: *>
  116: *> \param[in,out] X21
  117: *> \verbatim
  118: *>          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
  119: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] LDX21
  123: *> \verbatim
  124: *>          LDX21 is INTEGER
  125: *>          The leading dimension of X21. LDX21 >= MAX(1,M-P).
  126: *> \endverbatim
  127: *>
  128: *> \param[out] THETA
  129: *> \verbatim
  130: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
  131: *>          MIN(P,M-P,Q,M-Q).
  132: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  133: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  134: *> \endverbatim
  135: *>
  136: *> \param[out] U1
  137: *> \verbatim
  138: *>          U1 is DOUBLE PRECISION array, dimension (P)
  139: *>          If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
  140: *> \endverbatim
  141: *>
  142: *> \param[in] LDU1
  143: *> \verbatim
  144: *>          LDU1 is INTEGER
  145: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  146: *>          MAX(1,P).
  147: *> \endverbatim
  148: *>
  149: *> \param[out] U2
  150: *> \verbatim
  151: *>          U2 is DOUBLE PRECISION array, dimension (M-P)
  152: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
  153: *>          matrix U2.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDU2
  157: *> \verbatim
  158: *>          LDU2 is INTEGER
  159: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  160: *>          MAX(1,M-P).
  161: *> \endverbatim
  162: *>
  163: *> \param[out] V1T
  164: *> \verbatim
  165: *>          V1T is DOUBLE PRECISION array, dimension (Q)
  166: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
  167: *>          matrix V1**T.
  168: *> \endverbatim
  169: *>
  170: *> \param[in] LDV1T
  171: *> \verbatim
  172: *>          LDV1T is INTEGER
  173: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  174: *>          MAX(1,Q).
  175: *> \endverbatim
  176: *>
  177: *> \param[out] WORK
  178: *> \verbatim
  179: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  180: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  181: *>          If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
  182: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  183: *>          define the matrix in intermediate bidiagonal-block form
  184: *>          remaining after nonconvergence. INFO specifies the number
  185: *>          of nonzero PHI's.
  186: *> \endverbatim
  187: *>
  188: *> \param[in] LWORK
  189: *> \verbatim
  190: *>          LWORK is INTEGER
  191: *>          The dimension of the array WORK.
  192: *>
  193: *>          If LWORK = -1, then a workspace query is assumed; the routine
  194: *>          only calculates the optimal size of the WORK array, returns
  195: *>          this value as the first entry of the work array, and no error
  196: *>          message related to LWORK is issued by XERBLA.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] IWORK
  200: *> \verbatim
  201: *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  202: *> \endverbatim
  203: *>
  204: *> \param[out] INFO
  205: *> \verbatim
  206: *>          INFO is INTEGER
  207: *>          = 0:  successful exit.
  208: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  209: *>          > 0:  DBBCSD did not converge. See the description of WORK
  210: *>                above for details.
  211: *> \endverbatim
  212: *
  213: *> \par References:
  214: *  ================
  215: *>
  216: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  217: *>      Algorithms, 50(1):33-65, 2009.
  218: *
  219: *  Authors:
  220: *  ========
  221: *
  222: *> \author Univ. of Tennessee
  223: *> \author Univ. of California Berkeley
  224: *> \author Univ. of Colorado Denver
  225: *> \author NAG Ltd.
  226: *
  227: *> \date July 2012
  228: *
  229: *> \ingroup doubleOTHERcomputational
  230: *
  231: *  =====================================================================
  232:       SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  233:      $                       X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  234:      $                       LDV1T, WORK, LWORK, IWORK, INFO )
  235: *
  236: *  -- LAPACK computational routine (3.5.0) --
  237: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  238: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  239: *     July 2012
  240: *
  241: *     .. Scalar Arguments ..
  242:       CHARACTER          JOBU1, JOBU2, JOBV1T
  243:       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  244:      $                   M, P, Q
  245: *     ..
  246: *     .. Array Arguments ..
  247:       DOUBLE PRECISION   THETA(*)
  248:       DOUBLE PRECISION   U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  249:      $                   X11(LDX11,*), X21(LDX21,*)
  250:       INTEGER            IWORK(*)
  251: *     ..
  252: *
  253: *  =====================================================================
  254: *
  255: *     .. Parameters ..
  256:       DOUBLE PRECISION   ONE, ZERO
  257:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
  258: *     ..
  259: *     .. Local Scalars ..
  260:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  261:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  262:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  263:      $                   J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  264:      $                   LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  265:      $                   LWORKMIN, LWORKOPT, R
  266:       LOGICAL            LQUERY, WANTU1, WANTU2, WANTV1T
  267: *     ..
  268: *     .. Local Arrays ..
  269:       DOUBLE PRECISION   DUM1(1), DUM2(1,1)
  270: *     ..
  271: *     .. External Subroutines ..
  272:       EXTERNAL           DBBCSD, DCOPY, DLACPY, DLAPMR, DLAPMT, DORBDB1,
  273:      $                   DORBDB2, DORBDB3, DORBDB4, DORGLQ, DORGQR,
  274:      $                   XERBLA
  275: *     ..
  276: *     .. External Functions ..
  277:       LOGICAL            LSAME
  278:       EXTERNAL           LSAME
  279: *     ..
  280: *     .. Intrinsic Function ..
  281:       INTRINSIC          INT, MAX, MIN
  282: *     ..
  283: *     .. Executable Statements ..
  284: *
  285: *     Test input arguments
  286: *
  287:       INFO = 0
  288:       WANTU1 = LSAME( JOBU1, 'Y' )
  289:       WANTU2 = LSAME( JOBU2, 'Y' )
  290:       WANTV1T = LSAME( JOBV1T, 'Y' )
  291:       LQUERY = LWORK .EQ. -1
  292: *
  293:       IF( M .LT. 0 ) THEN
  294:          INFO = -4
  295:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  296:          INFO = -5
  297:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  298:          INFO = -6
  299:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  300:          INFO = -8
  301:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  302:          INFO = -10
  303:       ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
  304:          INFO = -13
  305:       ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
  306:          INFO = -15
  307:       ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
  308:          INFO = -17
  309:       END IF
  310: *
  311:       R = MIN( P, M-P, Q, M-Q )
  312: *
  313: *     Compute workspace
  314: *
  315: *       WORK layout:
  316: *     |-------------------------------------------------------|
  317: *     | LWORKOPT (1)                                          |
  318: *     |-------------------------------------------------------|
  319: *     | PHI (MAX(1,R-1))                                      |
  320: *     |-------------------------------------------------------|
  321: *     | TAUP1 (MAX(1,P))                        | B11D (R)    |
  322: *     | TAUP2 (MAX(1,M-P))                      | B11E (R-1)  |
  323: *     | TAUQ1 (MAX(1,Q))                        | B12D (R)    |
  324: *     |-----------------------------------------| B12E (R-1)  |
  325: *     | DORBDB WORK | DORGQR WORK | DORGLQ WORK | B21D (R)    |
  326: *     |             |             |             | B21E (R-1)  |
  327: *     |             |             |             | B22D (R)    |
  328: *     |             |             |             | B22E (R-1)  |
  329: *     |             |             |             | DBBCSD WORK |
  330: *     |-------------------------------------------------------|
  331: *
  332:       IF( INFO .EQ. 0 ) THEN
  333:          IPHI = 2
  334:          IB11D = IPHI + MAX( 1, R-1 )
  335:          IB11E = IB11D + MAX( 1, R )
  336:          IB12D = IB11E + MAX( 1, R - 1 )
  337:          IB12E = IB12D + MAX( 1, R )
  338:          IB21D = IB12E + MAX( 1, R - 1 )
  339:          IB21E = IB21D + MAX( 1, R )
  340:          IB22D = IB21E + MAX( 1, R - 1 )
  341:          IB22E = IB22D + MAX( 1, R )
  342:          IBBCSD = IB22E + MAX( 1, R - 1 )
  343:          ITAUP1 = IPHI + MAX( 1, R-1 )
  344:          ITAUP2 = ITAUP1 + MAX( 1, P )
  345:          ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  346:          IORBDB = ITAUQ1 + MAX( 1, Q )
  347:          IORGQR = ITAUQ1 + MAX( 1, Q )
  348:          IORGLQ = ITAUQ1 + MAX( 1, Q )
  349:          LORGQRMIN = 1
  350:          LORGQROPT = 1
  351:          LORGLQMIN = 1
  352:          LORGLQOPT = 1
  353:          IF( R .EQ. Q ) THEN
  354:             CALL DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  355:      $                    DUM1, DUM1, DUM1, DUM1, WORK,
  356:      $                    -1, CHILDINFO )
  357:             LORBDB = INT( WORK(1) )
  358:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  359:                CALL DORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1,
  360:      $                      CHILDINFO )
  361:                LORGQRMIN = MAX( LORGQRMIN, P )
  362:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  363:             ENDIF
  364:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  365:                CALL DORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1),
  366:      $                      -1, CHILDINFO )
  367:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  368:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  369:             END IF
  370:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  371:                CALL DORGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
  372:      $                      DUM1, WORK(1), -1, CHILDINFO )
  373:                LORGLQMIN = MAX( LORGLQMIN, Q-1 )
  374:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  375:             END IF
  376:             CALL DBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  377:      $                   DUM1, U1, LDU1, U2, LDU2, V1T, LDV1T,
  378:      $                   DUM2, 1, DUM1, DUM1, DUM1,
  379:      $                   DUM1, DUM1, DUM1, DUM1,
  380:      $                   DUM1, WORK(1), -1, CHILDINFO )
  381:             LBBCSD = INT( WORK(1) )
  382:          ELSE IF( R .EQ. P ) THEN
  383:             CALL DORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  384:      $                    DUM1, DUM1, DUM1, DUM1,
  385:      $                    WORK(1), -1, CHILDINFO )
  386:             LORBDB = INT( WORK(1) )
  387:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  388:                CALL DORGQR( P-1, P-1, P-1, U1(2,2), LDU1, DUM1,
  389:      $                      WORK(1), -1, CHILDINFO )
  390:                LORGQRMIN = MAX( LORGQRMIN, P-1 )
  391:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  392:             END IF
  393:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  394:                CALL DORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1),
  395:      $                      -1, CHILDINFO )
  396:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  397:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  398:             END IF
  399:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  400:                CALL DORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1,
  401:      $                      CHILDINFO )
  402:                LORGLQMIN = MAX( LORGLQMIN, Q )
  403:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  404:             END IF
  405:             CALL DBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  406:      $                   DUM1, V1T, LDV1T, DUM2, 1, U1, LDU1,
  407:      $                   U2, LDU2, DUM1, DUM1, DUM1,
  408:      $                   DUM1, DUM1, DUM1, DUM1,
  409:      $                   DUM1, WORK(1), -1, CHILDINFO )
  410:             LBBCSD = INT( WORK(1) )
  411:          ELSE IF( R .EQ. M-P ) THEN
  412:             CALL DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  413:      $                    DUM1, DUM1, DUM1, DUM1,
  414:      $                    WORK(1), -1, CHILDINFO )
  415:             LORBDB = INT( WORK(1) )
  416:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  417:                CALL DORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1,
  418:      $                      CHILDINFO )
  419:                LORGQRMIN = MAX( LORGQRMIN, P )
  420:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  421:             END IF
  422:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  423:                CALL DORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  424:      $                      DUM1, WORK(1), -1, CHILDINFO )
  425:                LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
  426:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  427:             END IF
  428:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  429:                CALL DORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1,
  430:      $                      CHILDINFO )
  431:                LORGLQMIN = MAX( LORGLQMIN, Q )
  432:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  433:             END IF
  434:             CALL DBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  435:      $                   THETA, DUM1, DUM2, 1, V1T, LDV1T, U2,
  436:      $                   LDU2, U1, LDU1, DUM1, DUM1, DUM1,
  437:      $                   DUM1, DUM1, DUM1, DUM1,
  438:      $                   DUM1, WORK(1), -1, CHILDINFO )
  439:             LBBCSD = INT( WORK(1) )
  440:          ELSE
  441:             CALL DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  442:      $                    DUM1, DUM1, DUM1, DUM1,
  443:      $                    DUM1, WORK(1), -1, CHILDINFO )
  444:             LORBDB = M + INT( WORK(1) )
  445:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  446:                CALL DORGQR( P, P, M-Q, U1, LDU1, DUM1, WORK(1), -1,
  447:      $                      CHILDINFO )
  448:                LORGQRMIN = MAX( LORGQRMIN, P )
  449:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  450:             END IF
  451:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  452:                CALL DORGQR( M-P, M-P, M-Q, U2, LDU2, DUM1, WORK(1),
  453:      $                      -1, CHILDINFO )
  454:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  455:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  456:             END IF
  457:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  458:                CALL DORGLQ( Q, Q, Q, V1T, LDV1T, DUM1, WORK(1), -1,
  459:      $                      CHILDINFO )
  460:                LORGLQMIN = MAX( LORGLQMIN, Q )
  461:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  462:             END IF
  463:             CALL DBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  464:      $                   THETA, DUM1, U2, LDU2, U1, LDU1, DUM2,
  465:      $                   1, V1T, LDV1T, DUM1, DUM1, DUM1,
  466:      $                   DUM1, DUM1, DUM1, DUM1,
  467:      $                   DUM1, WORK(1), -1, CHILDINFO )
  468:             LBBCSD = INT( WORK(1) )
  469:          END IF
  470:          LWORKMIN = MAX( IORBDB+LORBDB-1,
  471:      $                   IORGQR+LORGQRMIN-1,
  472:      $                   IORGLQ+LORGLQMIN-1,
  473:      $                   IBBCSD+LBBCSD-1 )
  474:          LWORKOPT = MAX( IORBDB+LORBDB-1,
  475:      $                   IORGQR+LORGQROPT-1,
  476:      $                   IORGLQ+LORGLQOPT-1,
  477:      $                   IBBCSD+LBBCSD-1 )
  478:          WORK(1) = LWORKOPT
  479:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  480:             INFO = -19
  481:          END IF
  482:       END IF
  483:       IF( INFO .NE. 0 ) THEN
  484:          CALL XERBLA( 'DORCSD2BY1', -INFO )
  485:          RETURN
  486:       ELSE IF( LQUERY ) THEN
  487:          RETURN
  488:       END IF
  489:       LORGQR = LWORK-IORGQR+1
  490:       LORGLQ = LWORK-IORGLQ+1
  491: *
  492: *     Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  493: *     in which R = MIN(P,M-P,Q,M-Q)
  494: *
  495:       IF( R .EQ. Q ) THEN
  496: *
  497: *        Case 1: R = Q
  498: *
  499: *        Simultaneously bidiagonalize X11 and X21
  500: *
  501:          CALL DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  502:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  503:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  504: *
  505: *        Accumulate Householder reflectors
  506: *
  507:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  508:             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  509:             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  510:      $                   LORGQR, CHILDINFO )
  511:          END IF
  512:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  513:             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  514:             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  515:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  516:          END IF
  517:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  518:             V1T(1,1) = ONE
  519:             DO J = 2, Q
  520:                V1T(1,J) = ZERO
  521:                V1T(J,1) = ZERO
  522:             END DO
  523:             CALL DLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  524:      $                   LDV1T )
  525:             CALL DORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  526:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  527:          END IF
  528: *
  529: *        Simultaneously diagonalize X11 and X21.
  530: *
  531:          CALL DBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  532:      $                WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T,
  533:      $                DUM2, 1, WORK(IB11D), WORK(IB11E),
  534:      $                WORK(IB12D), WORK(IB12E), WORK(IB21D),
  535:      $                WORK(IB21E), WORK(IB22D), WORK(IB22E),
  536:      $                WORK(IBBCSD), LBBCSD, CHILDINFO )
  537: *
  538: *        Permute rows and columns to place zero submatrices in
  539: *        preferred positions
  540: *
  541:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  542:             DO I = 1, Q
  543:                IWORK(I) = M - P - Q + I
  544:             END DO
  545:             DO I = Q + 1, M - P
  546:                IWORK(I) = I - Q
  547:             END DO
  548:             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  549:          END IF
  550:       ELSE IF( R .EQ. P ) THEN
  551: *
  552: *        Case 2: R = P
  553: *
  554: *        Simultaneously bidiagonalize X11 and X21
  555: *
  556:          CALL DORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  557:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  558:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  559: *
  560: *        Accumulate Householder reflectors
  561: *
  562:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  563:             U1(1,1) = ONE
  564:             DO J = 2, P
  565:                U1(1,J) = ZERO
  566:                U1(J,1) = ZERO
  567:             END DO
  568:             CALL DLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  569:             CALL DORGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  570:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  571:          END IF
  572:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  573:             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  574:             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  575:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  576:          END IF
  577:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  578:             CALL DLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  579:             CALL DORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  580:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  581:          END IF
  582: *
  583: *        Simultaneously diagonalize X11 and X21.
  584: *
  585:          CALL DBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  586:      $                WORK(IPHI), V1T, LDV1T, DUM2, 1, U1, LDU1, U2,
  587:      $                LDU2, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  588:      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
  589:      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  590:      $                CHILDINFO )
  591: *
  592: *        Permute rows and columns to place identity submatrices in
  593: *        preferred positions
  594: *
  595:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  596:             DO I = 1, Q
  597:                IWORK(I) = M - P - Q + I
  598:             END DO
  599:             DO I = Q + 1, M - P
  600:                IWORK(I) = I - Q
  601:             END DO
  602:             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  603:          END IF
  604:       ELSE IF( R .EQ. M-P ) THEN
  605: *
  606: *        Case 3: R = M-P
  607: *
  608: *        Simultaneously bidiagonalize X11 and X21
  609: *
  610:          CALL DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  611:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  612:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  613: *
  614: *        Accumulate Householder reflectors
  615: *
  616:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  617:             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  618:             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  619:      $                   LORGQR, CHILDINFO )
  620:          END IF
  621:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  622:             U2(1,1) = ONE
  623:             DO J = 2, M-P
  624:                U2(1,J) = ZERO
  625:                U2(J,1) = ZERO
  626:             END DO
  627:             CALL DLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  628:      $                   LDU2 )
  629:             CALL DORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  630:      $                   WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  631:          END IF
  632:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  633:             CALL DLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  634:             CALL DORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  635:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  636:          END IF
  637: *
  638: *        Simultaneously diagonalize X11 and X21.
  639: *
  640:          CALL DBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  641:      $                THETA, WORK(IPHI), DUM2, 1, V1T, LDV1T, U2,
  642:      $                LDU2, U1, LDU1, WORK(IB11D), WORK(IB11E),
  643:      $                WORK(IB12D), WORK(IB12E), WORK(IB21D),
  644:      $                WORK(IB21E), WORK(IB22D), WORK(IB22E),
  645:      $                WORK(IBBCSD), LBBCSD, CHILDINFO )
  646: *
  647: *        Permute rows and columns to place identity submatrices in
  648: *        preferred positions
  649: *
  650:          IF( Q .GT. R ) THEN
  651:             DO I = 1, R
  652:                IWORK(I) = Q - R + I
  653:             END DO
  654:             DO I = R + 1, Q
  655:                IWORK(I) = I - R
  656:             END DO
  657:             IF( WANTU1 ) THEN
  658:                CALL DLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  659:             END IF
  660:             IF( WANTV1T ) THEN
  661:                CALL DLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  662:             END IF
  663:          END IF
  664:       ELSE
  665: *
  666: *        Case 4: R = M-Q
  667: *
  668: *        Simultaneously bidiagonalize X11 and X21
  669: *
  670:          CALL DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  671:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  672:      $                 WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  673:      $                 LORBDB-M, CHILDINFO )
  674: *
  675: *        Accumulate Householder reflectors
  676: *
  677:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  678:             CALL DCOPY( P, WORK(IORBDB), 1, U1, 1 )
  679:             DO J = 2, P
  680:                U1(1,J) = ZERO
  681:             END DO
  682:             CALL DLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  683:      $                   LDU1 )
  684:             CALL DORGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  685:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  686:          END IF
  687:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  688:             CALL DCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  689:             DO J = 2, M-P
  690:                U2(1,J) = ZERO
  691:             END DO
  692:             CALL DLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  693:      $                   LDU2 )
  694:             CALL DORGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  695:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  696:          END IF
  697:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  698:             CALL DLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  699:             CALL DLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  700:      $                   V1T(M-Q+1,M-Q+1), LDV1T )
  701:             CALL DLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  702:      $                   V1T(P+1,P+1), LDV1T )
  703:             CALL DORGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  704:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  705:          END IF
  706: *
  707: *        Simultaneously diagonalize X11 and X21.
  708: *
  709:          CALL DBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  710:      $                THETA, WORK(IPHI), U2, LDU2, U1, LDU1, DUM2,
  711:      $                1, V1T, LDV1T, WORK(IB11D), WORK(IB11E),
  712:      $                WORK(IB12D), WORK(IB12E), WORK(IB21D),
  713:      $                WORK(IB21E), WORK(IB22D), WORK(IB22E),
  714:      $                WORK(IBBCSD), LBBCSD, CHILDINFO )
  715: *
  716: *        Permute rows and columns to place identity submatrices in
  717: *        preferred positions
  718: *
  719:          IF( P .GT. R ) THEN
  720:             DO I = 1, R
  721:                IWORK(I) = P - R + I
  722:             END DO
  723:             DO I = R + 1, P
  724:                IWORK(I) = I - R
  725:             END DO
  726:             IF( WANTU1 ) THEN
  727:                CALL DLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  728:             END IF
  729:             IF( WANTV1T ) THEN
  730:                CALL DLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  731:             END IF
  732:          END IF
  733:       END IF
  734: *
  735:       RETURN
  736: *
  737: *     End of DORCSD2BY1
  738: *
  739:       END
  740: 

CVSweb interface <joel.bertrand@systella.fr>