File:  [local] / rpl / lapack / lapack / dorcsd2by1.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:27:10 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD

Mise à jour de lapack.

    1: *> \brief \b DORCSD2BY1
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DORCSD2BY1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorcsd2by1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorcsd2by1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorcsd2by1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
   22: *                              X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
   23: *                              LDV1T, WORK, LWORK, IWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBU1, JOBU2, JOBV1T
   27: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
   28: *      $                   M, P, Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   THETA(*)
   32: *       DOUBLE PRECISION   U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
   33: *      $                   X11(LDX11,*), X21(LDX21,*)
   34: *       INTEGER            IWORK(*)
   35: *       ..
   36: *    
   37:    38: *> \par Purpose:
   39: *> =============
   40: *>
   41: *>\verbatim
   42: *> Purpose:
   43: *> ========
   44: *>
   45: *> DORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
   46: *> orthonormal columns that has been partitioned into a 2-by-1 block
   47: *> structure:
   48: *>
   49: *>                                [  I  0  0 ]
   50: *>                                [  0  C  0 ]
   51: *>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
   52: *>      X = [-----] = [---------] [----------] V1**T .
   53: *>          [ X21 ]   [    | U2 ] [  0  0  0 ]
   54: *>                                [  0  S  0 ]
   55: *>                                [  0  0  I ]
   56: *> 
   57: *> X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P,
   58: *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
   59: *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
   60: *> R = MIN(P,M-P,Q,M-Q).
   61: *> \endverbatim
   62: *
   63: *  Arguments:
   64: *  ==========
   65: *
   66: *> \param[in] JOBU1
   67: *> \verbatim
   68: *>          JOBU1 is CHARACTER
   69: *>          = 'Y':      U1 is computed;
   70: *>          otherwise:  U1 is not computed.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] JOBU2
   74: *> \verbatim
   75: *>          JOBU2 is CHARACTER
   76: *>          = 'Y':      U2 is computed;
   77: *>          otherwise:  U2 is not computed.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] JOBV1T
   81: *> \verbatim
   82: *>          JOBV1T is CHARACTER
   83: *>          = 'Y':      V1T is computed;
   84: *>          otherwise:  V1T is not computed.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] M
   88: *> \verbatim
   89: *>          M is INTEGER
   90: *>          The number of rows in X.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] P
   94: *> \verbatim
   95: *>          P is INTEGER
   96: *>          The number of rows in X11. 0 <= P <= M.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] Q
  100: *> \verbatim
  101: *>          Q is INTEGER
  102: *>          The number of columns in X11 and X21. 0 <= Q <= M.
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] X11
  106: *> \verbatim
  107: *>          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
  108: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] LDX11
  112: *> \verbatim
  113: *>          LDX11 is INTEGER
  114: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
  115: *> \endverbatim
  116: *>
  117: *> \param[in,out] X21
  118: *> \verbatim
  119: *>          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
  120: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] LDX21
  124: *> \verbatim
  125: *>          LDX21 is INTEGER
  126: *>          The leading dimension of X21. LDX21 >= MAX(1,M-P).
  127: *> \endverbatim
  128: *>
  129: *> \param[out] THETA
  130: *> \verbatim
  131: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
  132: *>          MIN(P,M-P,Q,M-Q).
  133: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  134: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  135: *> \endverbatim
  136: *>
  137: *> \param[out] U1
  138: *> \verbatim
  139: *>          U1 is DOUBLE PRECISION array, dimension (P)
  140: *>          If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
  141: *> \endverbatim
  142: *>
  143: *> \param[in] LDU1
  144: *> \verbatim
  145: *>          LDU1 is INTEGER
  146: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  147: *>          MAX(1,P).
  148: *> \endverbatim
  149: *>
  150: *> \param[out] U2
  151: *> \verbatim
  152: *>          U2 is DOUBLE PRECISION array, dimension (M-P)
  153: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
  154: *>          matrix U2.
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LDU2
  158: *> \verbatim
  159: *>          LDU2 is INTEGER
  160: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  161: *>          MAX(1,M-P).
  162: *> \endverbatim
  163: *>
  164: *> \param[out] V1T
  165: *> \verbatim
  166: *>          V1T is DOUBLE PRECISION array, dimension (Q)
  167: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
  168: *>          matrix V1**T.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDV1T
  172: *> \verbatim
  173: *>          LDV1T is INTEGER
  174: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  175: *>          MAX(1,Q).
  176: *> \endverbatim
  177: *>
  178: *> \param[out] WORK
  179: *> \verbatim
  180: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  181: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  182: *>          If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
  183: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  184: *>          define the matrix in intermediate bidiagonal-block form
  185: *>          remaining after nonconvergence. INFO specifies the number
  186: *>          of nonzero PHI's.
  187: *> \endverbatim
  188: *>
  189: *> \param[in] LWORK
  190: *> \verbatim
  191: *>          LWORK is INTEGER
  192: *>          The dimension of the array WORK.
  193: *>
  194: *>          If LWORK = -1, then a workspace query is assumed; the routine
  195: *>          only calculates the optimal size of the WORK array, returns
  196: *>          this value as the first entry of the work array, and no error
  197: *>          message related to LWORK is issued by XERBLA.
  198: *> \endverbatim
  199: *>
  200: *> \param[out] IWORK
  201: *> \verbatim
  202: *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  203: *> \endverbatim
  204: *>
  205: *> \param[out] INFO
  206: *> \verbatim
  207: *>          INFO is INTEGER
  208: *>          = 0:  successful exit.
  209: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  210: *>          > 0:  DBBCSD did not converge. See the description of WORK
  211: *>                above for details.
  212: *> \endverbatim
  213: *
  214: *> \par References:
  215: *  ================
  216: *>
  217: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  218: *>      Algorithms, 50(1):33-65, 2009.
  219: *
  220: *  Authors:
  221: *  ========
  222: *
  223: *> \author Univ. of Tennessee 
  224: *> \author Univ. of California Berkeley 
  225: *> \author Univ. of Colorado Denver 
  226: *> \author NAG Ltd. 
  227: *
  228: *> \date July 2012
  229: *
  230: *> \ingroup doubleOTHERcomputational
  231: *
  232: *  =====================================================================
  233:       SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  234:      $                       X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  235:      $                       LDV1T, WORK, LWORK, IWORK, INFO )
  236: *
  237: *  -- LAPACK computational routine (3.5.0) --
  238: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  239: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  240: *     July 2012
  241: *
  242: *     .. Scalar Arguments ..
  243:       CHARACTER          JOBU1, JOBU2, JOBV1T
  244:       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  245:      $                   M, P, Q
  246: *     ..
  247: *     .. Array Arguments ..
  248:       DOUBLE PRECISION   THETA(*)
  249:       DOUBLE PRECISION   U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  250:      $                   X11(LDX11,*), X21(LDX21,*)
  251:       INTEGER            IWORK(*)
  252: *     ..
  253: *  
  254: *  =====================================================================
  255: *
  256: *     .. Parameters ..
  257:       DOUBLE PRECISION   ONE, ZERO
  258:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
  259: *     ..
  260: *     .. Local Scalars ..
  261:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  262:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  263:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  264:      $                   J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  265:      $                   LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  266:      $                   LWORKMIN, LWORKOPT, R
  267:       LOGICAL            LQUERY, WANTU1, WANTU2, WANTV1T
  268: *     ..
  269: *     .. Local Arrays ..
  270:       DOUBLE PRECISION   DUM1(1), DUM2(1,1)
  271: *     ..
  272: *     .. External Subroutines ..
  273:       EXTERNAL           DBBCSD, DCOPY, DLACPY, DLAPMR, DLAPMT, DORBDB1,
  274:      $                   DORBDB2, DORBDB3, DORBDB4, DORGLQ, DORGQR,
  275:      $                   XERBLA
  276: *     ..
  277: *     .. External Functions ..
  278:       LOGICAL            LSAME
  279:       EXTERNAL           LSAME
  280: *     ..
  281: *     .. Intrinsic Function ..
  282:       INTRINSIC          INT, MAX, MIN
  283: *     ..
  284: *     .. Executable Statements ..
  285: *
  286: *     Test input arguments
  287: *
  288:       INFO = 0
  289:       WANTU1 = LSAME( JOBU1, 'Y' )
  290:       WANTU2 = LSAME( JOBU2, 'Y' )
  291:       WANTV1T = LSAME( JOBV1T, 'Y' )
  292:       LQUERY = LWORK .EQ. -1
  293: *
  294:       IF( M .LT. 0 ) THEN
  295:          INFO = -4
  296:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  297:          INFO = -5
  298:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  299:          INFO = -6
  300:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  301:          INFO = -8
  302:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  303:          INFO = -10
  304:       ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
  305:          INFO = -13
  306:       ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
  307:          INFO = -15
  308:       ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
  309:          INFO = -17
  310:       END IF
  311: *
  312:       R = MIN( P, M-P, Q, M-Q )
  313: *
  314: *     Compute workspace
  315: *
  316: *       WORK layout:
  317: *     |-------------------------------------------------------|
  318: *     | LWORKOPT (1)                                          |
  319: *     |-------------------------------------------------------|
  320: *     | PHI (MAX(1,R-1))                                      |
  321: *     |-------------------------------------------------------|
  322: *     | TAUP1 (MAX(1,P))                        | B11D (R)    |
  323: *     | TAUP2 (MAX(1,M-P))                      | B11E (R-1)  |
  324: *     | TAUQ1 (MAX(1,Q))                        | B12D (R)    |
  325: *     |-----------------------------------------| B12E (R-1)  |
  326: *     | DORBDB WORK | DORGQR WORK | DORGLQ WORK | B21D (R)    |
  327: *     |             |             |             | B21E (R-1)  |
  328: *     |             |             |             | B22D (R)    |
  329: *     |             |             |             | B22E (R-1)  |
  330: *     |             |             |             | DBBCSD WORK |
  331: *     |-------------------------------------------------------|
  332: *
  333:       IF( INFO .EQ. 0 ) THEN
  334:          IPHI = 2
  335:          IB11D = IPHI + MAX( 1, R-1 )
  336:          IB11E = IB11D + MAX( 1, R )
  337:          IB12D = IB11E + MAX( 1, R - 1 )
  338:          IB12E = IB12D + MAX( 1, R )
  339:          IB21D = IB12E + MAX( 1, R - 1 )
  340:          IB21E = IB21D + MAX( 1, R )
  341:          IB22D = IB21E + MAX( 1, R - 1 )
  342:          IB22E = IB22D + MAX( 1, R )
  343:          IBBCSD = IB22E + MAX( 1, R - 1 )
  344:          ITAUP1 = IPHI + MAX( 1, R-1 )
  345:          ITAUP2 = ITAUP1 + MAX( 1, P )
  346:          ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  347:          IORBDB = ITAUQ1 + MAX( 1, Q )
  348:          IORGQR = ITAUQ1 + MAX( 1, Q )
  349:          IORGLQ = ITAUQ1 + MAX( 1, Q )
  350:          LORGQRMIN = 1
  351:          LORGQROPT = 1
  352:          LORGLQMIN = 1
  353:          LORGLQOPT = 1
  354:          IF( R .EQ. Q ) THEN
  355:             CALL DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  356:      $                    DUM1, DUM1, DUM1, DUM1, WORK,
  357:      $                    -1, CHILDINFO )
  358:             LORBDB = INT( WORK(1) )
  359:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  360:                CALL DORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1,
  361:      $                      CHILDINFO )
  362:                LORGQRMIN = MAX( LORGQRMIN, P )
  363:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  364:             ENDIF
  365:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  366:                CALL DORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1),
  367:      $                      -1, CHILDINFO )
  368:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  369:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  370:             END IF
  371:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  372:                CALL DORGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
  373:      $                      DUM1, WORK(1), -1, CHILDINFO )
  374:                LORGLQMIN = MAX( LORGLQMIN, Q-1 )
  375:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  376:             END IF
  377:             CALL DBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  378:      $                   DUM1, U1, LDU1, U2, LDU2, V1T, LDV1T,
  379:      $                   DUM2, 1, DUM1, DUM1, DUM1,
  380:      $                   DUM1, DUM1, DUM1, DUM1,
  381:      $                   DUM1, WORK(1), -1, CHILDINFO )
  382:             LBBCSD = INT( WORK(1) )
  383:          ELSE IF( R .EQ. P ) THEN
  384:             CALL DORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  385:      $                    DUM1, DUM1, DUM1, DUM1,
  386:      $                    WORK(1), -1, CHILDINFO )
  387:             LORBDB = INT( WORK(1) )
  388:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  389:                CALL DORGQR( P-1, P-1, P-1, U1(2,2), LDU1, DUM1,
  390:      $                      WORK(1), -1, CHILDINFO )
  391:                LORGQRMIN = MAX( LORGQRMIN, P-1 )
  392:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  393:             END IF
  394:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  395:                CALL DORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1),
  396:      $                      -1, CHILDINFO )
  397:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  398:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  399:             END IF
  400:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  401:                CALL DORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1,
  402:      $                      CHILDINFO )
  403:                LORGLQMIN = MAX( LORGLQMIN, Q )
  404:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  405:             END IF
  406:             CALL DBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  407:      $                   DUM1, V1T, LDV1T, DUM2, 1, U1, LDU1,
  408:      $                   U2, LDU2, DUM1, DUM1, DUM1,
  409:      $                   DUM1, DUM1, DUM1, DUM1,
  410:      $                   DUM1, WORK(1), -1, CHILDINFO )
  411:             LBBCSD = INT( WORK(1) )
  412:          ELSE IF( R .EQ. M-P ) THEN
  413:             CALL DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  414:      $                    DUM1, DUM1, DUM1, DUM1,
  415:      $                    WORK(1), -1, CHILDINFO )
  416:             LORBDB = INT( WORK(1) )
  417:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  418:                CALL DORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1,
  419:      $                      CHILDINFO )
  420:                LORGQRMIN = MAX( LORGQRMIN, P )
  421:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  422:             END IF
  423:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  424:                CALL DORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  425:      $                      DUM1, WORK(1), -1, CHILDINFO )
  426:                LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
  427:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  428:             END IF
  429:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  430:                CALL DORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1,
  431:      $                      CHILDINFO )
  432:                LORGLQMIN = MAX( LORGLQMIN, Q )
  433:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  434:             END IF
  435:             CALL DBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  436:      $                   THETA, DUM1, DUM2, 1, V1T, LDV1T, U2,
  437:      $                   LDU2, U1, LDU1, DUM1, DUM1, DUM1,
  438:      $                   DUM1, DUM1, DUM1, DUM1,
  439:      $                   DUM1, WORK(1), -1, CHILDINFO )
  440:             LBBCSD = INT( WORK(1) )
  441:          ELSE
  442:             CALL DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  443:      $                    DUM1, DUM1, DUM1, DUM1,
  444:      $                    DUM1, WORK(1), -1, CHILDINFO )
  445:             LORBDB = M + INT( WORK(1) )
  446:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  447:                CALL DORGQR( P, P, M-Q, U1, LDU1, DUM1, WORK(1), -1,
  448:      $                      CHILDINFO )
  449:                LORGQRMIN = MAX( LORGQRMIN, P )
  450:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  451:             END IF
  452:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  453:                CALL DORGQR( M-P, M-P, M-Q, U2, LDU2, DUM1, WORK(1),
  454:      $                      -1, CHILDINFO )
  455:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  456:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  457:             END IF
  458:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  459:                CALL DORGLQ( Q, Q, Q, V1T, LDV1T, DUM1, WORK(1), -1,
  460:      $                      CHILDINFO )
  461:                LORGLQMIN = MAX( LORGLQMIN, Q )
  462:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  463:             END IF
  464:             CALL DBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  465:      $                   THETA, DUM1, U2, LDU2, U1, LDU1, DUM2,
  466:      $                   1, V1T, LDV1T, DUM1, DUM1, DUM1,
  467:      $                   DUM1, DUM1, DUM1, DUM1,
  468:      $                   DUM1, WORK(1), -1, CHILDINFO )
  469:             LBBCSD = INT( WORK(1) )
  470:          END IF
  471:          LWORKMIN = MAX( IORBDB+LORBDB-1,
  472:      $                   IORGQR+LORGQRMIN-1,
  473:      $                   IORGLQ+LORGLQMIN-1,
  474:      $                   IBBCSD+LBBCSD-1 )
  475:          LWORKOPT = MAX( IORBDB+LORBDB-1,
  476:      $                   IORGQR+LORGQROPT-1,
  477:      $                   IORGLQ+LORGLQOPT-1,
  478:      $                   IBBCSD+LBBCSD-1 )
  479:          WORK(1) = LWORKOPT
  480:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  481:             INFO = -19
  482:          END IF
  483:       END IF
  484:       IF( INFO .NE. 0 ) THEN
  485:          CALL XERBLA( 'DORCSD2BY1', -INFO )
  486:          RETURN
  487:       ELSE IF( LQUERY ) THEN
  488:          RETURN
  489:       END IF
  490:       LORGQR = LWORK-IORGQR+1
  491:       LORGLQ = LWORK-IORGLQ+1
  492: *
  493: *     Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  494: *     in which R = MIN(P,M-P,Q,M-Q)
  495: *
  496:       IF( R .EQ. Q ) THEN
  497: *
  498: *        Case 1: R = Q
  499: *
  500: *        Simultaneously bidiagonalize X11 and X21
  501: *
  502:          CALL DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  503:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  504:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  505: *
  506: *        Accumulate Householder reflectors
  507: *
  508:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  509:             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  510:             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  511:      $                   LORGQR, CHILDINFO )
  512:          END IF
  513:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  514:             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  515:             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  516:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  517:          END IF
  518:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  519:             V1T(1,1) = ONE
  520:             DO J = 2, Q
  521:                V1T(1,J) = ZERO
  522:                V1T(J,1) = ZERO
  523:             END DO
  524:             CALL DLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  525:      $                   LDV1T )
  526:             CALL DORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  527:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  528:          END IF
  529: *   
  530: *        Simultaneously diagonalize X11 and X21.
  531: *   
  532:          CALL DBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  533:      $                WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T,
  534:      $                DUM2, 1, WORK(IB11D), WORK(IB11E),
  535:      $                WORK(IB12D), WORK(IB12E), WORK(IB21D),
  536:      $                WORK(IB21E), WORK(IB22D), WORK(IB22E),
  537:      $                WORK(IBBCSD), LBBCSD, CHILDINFO )
  538: *   
  539: *        Permute rows and columns to place zero submatrices in
  540: *        preferred positions
  541: *
  542:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  543:             DO I = 1, Q
  544:                IWORK(I) = M - P - Q + I
  545:             END DO
  546:             DO I = Q + 1, M - P
  547:                IWORK(I) = I - Q
  548:             END DO
  549:             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  550:          END IF
  551:       ELSE IF( R .EQ. P ) THEN
  552: *
  553: *        Case 2: R = P
  554: *
  555: *        Simultaneously bidiagonalize X11 and X21
  556: *
  557:          CALL DORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  558:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  559:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  560: *
  561: *        Accumulate Householder reflectors
  562: *
  563:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  564:             U1(1,1) = ONE
  565:             DO J = 2, P
  566:                U1(1,J) = ZERO
  567:                U1(J,1) = ZERO
  568:             END DO
  569:             CALL DLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  570:             CALL DORGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  571:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  572:          END IF
  573:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  574:             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  575:             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  576:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  577:          END IF
  578:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  579:             CALL DLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  580:             CALL DORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  581:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  582:          END IF
  583: *   
  584: *        Simultaneously diagonalize X11 and X21.
  585: *   
  586:          CALL DBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  587:      $                WORK(IPHI), V1T, LDV1T, DUM2, 1, U1, LDU1, U2,
  588:      $                LDU2, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  589:      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
  590:      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  591:      $                CHILDINFO )
  592: *   
  593: *        Permute rows and columns to place identity submatrices in
  594: *        preferred positions
  595: *
  596:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  597:             DO I = 1, Q
  598:                IWORK(I) = M - P - Q + I
  599:             END DO
  600:             DO I = Q + 1, M - P
  601:                IWORK(I) = I - Q
  602:             END DO
  603:             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  604:          END IF
  605:       ELSE IF( R .EQ. M-P ) THEN
  606: *
  607: *        Case 3: R = M-P
  608: *
  609: *        Simultaneously bidiagonalize X11 and X21
  610: *
  611:          CALL DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  612:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  613:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  614: *
  615: *        Accumulate Householder reflectors
  616: *
  617:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  618:             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  619:             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  620:      $                   LORGQR, CHILDINFO )
  621:          END IF
  622:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  623:             U2(1,1) = ONE
  624:             DO J = 2, M-P
  625:                U2(1,J) = ZERO
  626:                U2(J,1) = ZERO
  627:             END DO
  628:             CALL DLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  629:      $                   LDU2 )
  630:             CALL DORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  631:      $                   WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  632:          END IF
  633:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  634:             CALL DLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  635:             CALL DORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  636:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  637:          END IF
  638: *   
  639: *        Simultaneously diagonalize X11 and X21.
  640: *   
  641:          CALL DBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  642:      $                THETA, WORK(IPHI), DUM2, 1, V1T, LDV1T, U2,
  643:      $                LDU2, U1, LDU1, WORK(IB11D), WORK(IB11E),
  644:      $                WORK(IB12D), WORK(IB12E), WORK(IB21D),
  645:      $                WORK(IB21E), WORK(IB22D), WORK(IB22E),
  646:      $                WORK(IBBCSD), LBBCSD, CHILDINFO )
  647: *   
  648: *        Permute rows and columns to place identity submatrices in
  649: *        preferred positions
  650: *
  651:          IF( Q .GT. R ) THEN
  652:             DO I = 1, R
  653:                IWORK(I) = Q - R + I
  654:             END DO
  655:             DO I = R + 1, Q
  656:                IWORK(I) = I - R
  657:             END DO
  658:             IF( WANTU1 ) THEN
  659:                CALL DLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  660:             END IF
  661:             IF( WANTV1T ) THEN
  662:                CALL DLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  663:             END IF
  664:          END IF
  665:       ELSE
  666: *
  667: *        Case 4: R = M-Q
  668: *
  669: *        Simultaneously bidiagonalize X11 and X21
  670: *
  671:          CALL DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  672:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  673:      $                 WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  674:      $                 LORBDB-M, CHILDINFO )
  675: *
  676: *        Accumulate Householder reflectors
  677: *
  678:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  679:             CALL DCOPY( P, WORK(IORBDB), 1, U1, 1 )
  680:             DO J = 2, P
  681:                U1(1,J) = ZERO
  682:             END DO
  683:             CALL DLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  684:      $                   LDU1 )
  685:             CALL DORGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  686:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  687:          END IF
  688:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  689:             CALL DCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  690:             DO J = 2, M-P
  691:                U2(1,J) = ZERO
  692:             END DO
  693:             CALL DLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  694:      $                   LDU2 )
  695:             CALL DORGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  696:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  697:          END IF
  698:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  699:             CALL DLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  700:             CALL DLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  701:      $                   V1T(M-Q+1,M-Q+1), LDV1T )
  702:             CALL DLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  703:      $                   V1T(P+1,P+1), LDV1T )
  704:             CALL DORGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  705:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  706:          END IF
  707: *   
  708: *        Simultaneously diagonalize X11 and X21.
  709: *   
  710:          CALL DBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  711:      $                THETA, WORK(IPHI), U2, LDU2, U1, LDU1, DUM2,
  712:      $                1, V1T, LDV1T, WORK(IB11D), WORK(IB11E),
  713:      $                WORK(IB12D), WORK(IB12E), WORK(IB21D),
  714:      $                WORK(IB21E), WORK(IB22D), WORK(IB22E),
  715:      $                WORK(IBBCSD), LBBCSD, CHILDINFO )
  716: *   
  717: *        Permute rows and columns to place identity submatrices in
  718: *        preferred positions
  719: *
  720:          IF( P .GT. R ) THEN
  721:             DO I = 1, R
  722:                IWORK(I) = P - R + I
  723:             END DO
  724:             DO I = R + 1, P
  725:                IWORK(I) = I - R
  726:             END DO
  727:             IF( WANTU1 ) THEN
  728:                CALL DLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  729:             END IF
  730:             IF( WANTV1T ) THEN
  731:                CALL DLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  732:             END IF
  733:          END IF
  734:       END IF
  735: *
  736:       RETURN
  737: *
  738: *     End of DORCSD2BY1
  739: *
  740:       END
  741: 

CVSweb interface <joel.bertrand@systella.fr>