File:  [local] / rpl / lapack / lapack / dorcsd2by1.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Thu Nov 26 11:44:19 2015 UTC (8 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, HEAD
Mise à jour de Lapack (3.6.0) et du numéro de version du RPL/2.

    1: *> \brief \b DORCSD2BY1
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DORCSD2BY1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorcsd2by1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorcsd2by1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorcsd2by1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
   22: *                              X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
   23: *                              LDV1T, WORK, LWORK, IWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBU1, JOBU2, JOBV1T
   27: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
   28: *      $                   M, P, Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   THETA(*)
   32: *       DOUBLE PRECISION   U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
   33: *      $                   X11(LDX11,*), X21(LDX21,*)
   34: *       INTEGER            IWORK(*)
   35: *       ..
   36: *    
   37:    38: *> \par Purpose:
   39: *> =============
   40: *>
   41: *>\verbatim
   42: *> Purpose:
   43: *> ========
   44: *>
   45: *> DORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
   46: *> orthonormal columns that has been partitioned into a 2-by-1 block
   47: *> structure:
   48: *>
   49: *>                                [  I  0  0 ]
   50: *>                                [  0  C  0 ]
   51: *>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
   52: *>      X = [-----] = [---------] [----------] V1**T .
   53: *>          [ X21 ]   [    | U2 ] [  0  0  0 ]
   54: *>                                [  0  S  0 ]
   55: *>                                [  0  0  I ]
   56: *> 
   57: *> X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P,
   58: *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
   59: *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
   60: *> R = MIN(P,M-P,Q,M-Q).
   61: *> \endverbatim
   62: *
   63: *  Arguments:
   64: *  ==========
   65: *
   66: *> \param[in] JOBU1
   67: *> \verbatim
   68: *>          JOBU1 is CHARACTER
   69: *>          = 'Y':      U1 is computed;
   70: *>          otherwise:  U1 is not computed.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] JOBU2
   74: *> \verbatim
   75: *>          JOBU2 is CHARACTER
   76: *>          = 'Y':      U2 is computed;
   77: *>          otherwise:  U2 is not computed.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] JOBV1T
   81: *> \verbatim
   82: *>          JOBV1T is CHARACTER
   83: *>          = 'Y':      V1T is computed;
   84: *>          otherwise:  V1T is not computed.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] M
   88: *> \verbatim
   89: *>          M is INTEGER
   90: *>          The number of rows in X.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] P
   94: *> \verbatim
   95: *>          P is INTEGER
   96: *>          The number of rows in X11. 0 <= P <= M.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] Q
  100: *> \verbatim
  101: *>          Q is INTEGER
  102: *>          The number of columns in X11 and X21. 0 <= Q <= M.
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] X11
  106: *> \verbatim
  107: *>          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
  108: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] LDX11
  112: *> \verbatim
  113: *>          LDX11 is INTEGER
  114: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
  115: *> \endverbatim
  116: *>
  117: *> \param[in,out] X21
  118: *> \verbatim
  119: *>          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
  120: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] LDX21
  124: *> \verbatim
  125: *>          LDX21 is INTEGER
  126: *>          The leading dimension of X21. LDX21 >= MAX(1,M-P).
  127: *> \endverbatim
  128: *>
  129: *> \param[out] THETA
  130: *> \verbatim
  131: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
  132: *>          MIN(P,M-P,Q,M-Q).
  133: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  134: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  135: *> \endverbatim
  136: *>
  137: *> \param[out] U1
  138: *> \verbatim
  139: *>          U1 is DOUBLE PRECISION array, dimension (P)
  140: *>          If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
  141: *> \endverbatim
  142: *>
  143: *> \param[in] LDU1
  144: *> \verbatim
  145: *>          LDU1 is INTEGER
  146: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  147: *>          MAX(1,P).
  148: *> \endverbatim
  149: *>
  150: *> \param[out] U2
  151: *> \verbatim
  152: *>          U2 is DOUBLE PRECISION array, dimension (M-P)
  153: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
  154: *>          matrix U2.
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LDU2
  158: *> \verbatim
  159: *>          LDU2 is INTEGER
  160: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  161: *>          MAX(1,M-P).
  162: *> \endverbatim
  163: *>
  164: *> \param[out] V1T
  165: *> \verbatim
  166: *>          V1T is DOUBLE PRECISION array, dimension (Q)
  167: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
  168: *>          matrix V1**T.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDV1T
  172: *> \verbatim
  173: *>          LDV1T is INTEGER
  174: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  175: *>          MAX(1,Q).
  176: *> \endverbatim
  177: *>
  178: *> \param[out] WORK
  179: *> \verbatim
  180: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  181: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  182: *>          If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
  183: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  184: *>          define the matrix in intermediate bidiagonal-block form
  185: *>          remaining after nonconvergence. INFO specifies the number
  186: *>          of nonzero PHI's.
  187: *> \endverbatim
  188: *>
  189: *> \param[in] LWORK
  190: *> \verbatim
  191: *>          LWORK is INTEGER
  192: *>          The dimension of the array WORK.
  193: *>
  194: *>          If LWORK = -1, then a workspace query is assumed; the routine
  195: *>          only calculates the optimal size of the WORK array, returns
  196: *>          this value as the first entry of the work array, and no error
  197: *>          message related to LWORK is issued by XERBLA.
  198: *> \endverbatim
  199: *>
  200: *> \param[out] IWORK
  201: *> \verbatim
  202: *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  203: *> \endverbatim
  204: *>
  205: *> \param[out] INFO
  206: *> \verbatim
  207: *>          INFO is INTEGER
  208: *>          = 0:  successful exit.
  209: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  210: *>          > 0:  DBBCSD did not converge. See the description of WORK
  211: *>                above for details.
  212: *> \endverbatim
  213: *
  214: *> \par References:
  215: *  ================
  216: *>
  217: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  218: *>      Algorithms, 50(1):33-65, 2009.
  219: *
  220: *  Authors:
  221: *  ========
  222: *
  223: *> \author Univ. of Tennessee 
  224: *> \author Univ. of California Berkeley 
  225: *> \author Univ. of Colorado Denver 
  226: *> \author NAG Ltd. 
  227: *
  228: *> \date July 2012
  229: *
  230: *> \ingroup doubleOTHERcomputational
  231: *
  232: *  =====================================================================
  233:       SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  234:      $                       X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  235:      $                       LDV1T, WORK, LWORK, IWORK, INFO )
  236: *
  237: *  -- LAPACK computational routine (3.5.0) --
  238: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  239: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  240: *     July 2012
  241: *
  242: *     .. Scalar Arguments ..
  243:       CHARACTER          JOBU1, JOBU2, JOBV1T
  244:       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  245:      $                   M, P, Q
  246: *     ..
  247: *     .. Array Arguments ..
  248:       DOUBLE PRECISION   THETA(*)
  249:       DOUBLE PRECISION   U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  250:      $                   X11(LDX11,*), X21(LDX21,*)
  251:       INTEGER            IWORK(*)
  252: *     ..
  253: *  
  254: *  =====================================================================
  255: *
  256: *     .. Parameters ..
  257:       DOUBLE PRECISION   ONE, ZERO
  258:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
  259: *     ..
  260: *     .. Local Scalars ..
  261:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  262:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  263:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  264:      $                   J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  265:      $                   LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  266:      $                   LWORKMIN, LWORKOPT, R
  267:       LOGICAL            LQUERY, WANTU1, WANTU2, WANTV1T
  268: *     ..
  269: *     .. External Subroutines ..
  270:       EXTERNAL           DBBCSD, DCOPY, DLACPY, DLAPMR, DLAPMT, DORBDB1,
  271:      $                   DORBDB2, DORBDB3, DORBDB4, DORGLQ, DORGQR,
  272:      $                   XERBLA
  273: *     ..
  274: *     .. External Functions ..
  275:       LOGICAL            LSAME
  276:       EXTERNAL           LSAME
  277: *     ..
  278: *     .. Intrinsic Function ..
  279:       INTRINSIC          INT, MAX, MIN
  280: *     ..
  281: *     .. Executable Statements ..
  282: *
  283: *     Test input arguments
  284: *
  285:       INFO = 0
  286:       WANTU1 = LSAME( JOBU1, 'Y' )
  287:       WANTU2 = LSAME( JOBU2, 'Y' )
  288:       WANTV1T = LSAME( JOBV1T, 'Y' )
  289:       LQUERY = LWORK .EQ. -1
  290: *
  291:       IF( M .LT. 0 ) THEN
  292:          INFO = -4
  293:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  294:          INFO = -5
  295:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  296:          INFO = -6
  297:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  298:          INFO = -8
  299:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  300:          INFO = -10
  301:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  302:          INFO = -13
  303:       ELSE IF( WANTU2 .AND. LDU2 .LT. M - P ) THEN
  304:          INFO = -15
  305:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  306:          INFO = -17
  307:       END IF
  308: *
  309:       R = MIN( P, M-P, Q, M-Q )
  310: *
  311: *     Compute workspace
  312: *
  313: *       WORK layout:
  314: *     |-------------------------------------------------------|
  315: *     | LWORKOPT (1)                                          |
  316: *     |-------------------------------------------------------|
  317: *     | PHI (MAX(1,R-1))                                      |
  318: *     |-------------------------------------------------------|
  319: *     | TAUP1 (MAX(1,P))                        | B11D (R)    |
  320: *     | TAUP2 (MAX(1,M-P))                      | B11E (R-1)  |
  321: *     | TAUQ1 (MAX(1,Q))                        | B12D (R)    |
  322: *     |-----------------------------------------| B12E (R-1)  |
  323: *     | DORBDB WORK | DORGQR WORK | DORGLQ WORK | B21D (R)    |
  324: *     |             |             |             | B21E (R-1)  |
  325: *     |             |             |             | B22D (R)    |
  326: *     |             |             |             | B22E (R-1)  |
  327: *     |             |             |             | DBBCSD WORK |
  328: *     |-------------------------------------------------------|
  329: *
  330:       IF( INFO .EQ. 0 ) THEN
  331:          IPHI = 2
  332:          IB11D = IPHI + MAX( 1, R-1 )
  333:          IB11E = IB11D + MAX( 1, R )
  334:          IB12D = IB11E + MAX( 1, R - 1 )
  335:          IB12E = IB12D + MAX( 1, R )
  336:          IB21D = IB12E + MAX( 1, R - 1 )
  337:          IB21E = IB21D + MAX( 1, R )
  338:          IB22D = IB21E + MAX( 1, R - 1 )
  339:          IB22E = IB22D + MAX( 1, R )
  340:          IBBCSD = IB22E + MAX( 1, R - 1 )
  341:          ITAUP1 = IPHI + MAX( 1, R-1 )
  342:          ITAUP2 = ITAUP1 + MAX( 1, P )
  343:          ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  344:          IORBDB = ITAUQ1 + MAX( 1, Q )
  345:          IORGQR = ITAUQ1 + MAX( 1, Q )
  346:          IORGLQ = ITAUQ1 + MAX( 1, Q )
  347:          IF( R .EQ. Q ) THEN
  348:             CALL DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  349:      $                    0, 0, WORK, -1, CHILDINFO )
  350:             LORBDB = INT( WORK(1) )
  351:             IF( P .GE. M-P ) THEN
  352:                CALL DORGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  353:      $                      CHILDINFO )
  354:                LORGQRMIN = MAX( 1, P )
  355:                LORGQROPT = INT( WORK(1) )
  356:             ELSE
  357:                CALL DORGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  358:      $                      CHILDINFO )
  359:                LORGQRMIN = MAX( 1, M-P )
  360:                LORGQROPT = INT( WORK(1) )
  361:             END IF
  362:             CALL DORGLQ( MAX(0,Q-1), MAX(0,Q-1), MAX(0,Q-1), V1T, LDV1T,
  363:      $                   0, WORK(1), -1, CHILDINFO )
  364:             LORGLQMIN = MAX( 1, Q-1 )
  365:             LORGLQOPT = INT( WORK(1) )
  366:             CALL DBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  367:      $                   0, U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1, 0, 0,
  368:      $                   0, 0, 0, 0, 0, 0, WORK(1), -1, CHILDINFO )
  369:             LBBCSD = INT( WORK(1) )
  370:          ELSE IF( R .EQ. P ) THEN
  371:             CALL DORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  372:      $                    0, 0, WORK(1), -1, CHILDINFO )
  373:             LORBDB = INT( WORK(1) )
  374:             IF( P-1 .GE. M-P ) THEN
  375:                CALL DORGQR( P-1, P-1, P-1, U1(2,2), LDU1, 0, WORK(1),
  376:      $                      -1, CHILDINFO )
  377:                LORGQRMIN = MAX( 1, P-1 )
  378:                LORGQROPT = INT( WORK(1) )
  379:             ELSE
  380:                CALL DORGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  381:      $                      CHILDINFO )
  382:                LORGQRMIN = MAX( 1, M-P )
  383:                LORGQROPT = INT( WORK(1) )
  384:             END IF
  385:             CALL DORGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  386:      $                   CHILDINFO )
  387:             LORGLQMIN = MAX( 1, Q )
  388:             LORGLQOPT = INT( WORK(1) )
  389:             CALL DBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  390:      $                   0, V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2, 0, 0,
  391:      $                   0, 0, 0, 0, 0, 0, WORK(1), -1, CHILDINFO )
  392:             LBBCSD = INT( WORK(1) )
  393:          ELSE IF( R .EQ. M-P ) THEN
  394:             CALL DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  395:      $                    0, 0, WORK(1), -1, CHILDINFO )
  396:             LORBDB = INT( WORK(1) )
  397:             IF( P .GE. M-P-1 ) THEN
  398:                CALL DORGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  399:      $                      CHILDINFO )
  400:                LORGQRMIN = MAX( 1, P )
  401:                LORGQROPT = INT( WORK(1) )
  402:             ELSE
  403:                CALL DORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, 0,
  404:      $                      WORK(1), -1, CHILDINFO )
  405:                LORGQRMIN = MAX( 1, M-P-1 )
  406:                LORGQROPT = INT( WORK(1) )
  407:             END IF
  408:             CALL DORGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  409:      $                   CHILDINFO )
  410:             LORGLQMIN = MAX( 1, Q )
  411:             LORGLQOPT = INT( WORK(1) )
  412:             CALL DBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  413:      $                   THETA, 0, 0, 1, V1T, LDV1T, U2, LDU2, U1, LDU1,
  414:      $                   0, 0, 0, 0, 0, 0, 0, 0, WORK(1), -1,
  415:      $                   CHILDINFO )
  416:             LBBCSD = INT( WORK(1) )
  417:          ELSE
  418:             CALL DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  419:      $                    0, 0, 0, WORK(1), -1, CHILDINFO )
  420:             LORBDB = M + INT( WORK(1) )
  421:             IF( P .GE. M-P ) THEN
  422:                CALL DORGQR( P, P, M-Q, U1, LDU1, 0, WORK(1), -1,
  423:      $                      CHILDINFO )
  424:                LORGQRMIN = MAX( 1, P )
  425:                LORGQROPT = INT( WORK(1) )
  426:             ELSE
  427:                CALL DORGQR( M-P, M-P, M-Q, U2, LDU2, 0, WORK(1), -1,
  428:      $                      CHILDINFO )
  429:                LORGQRMIN = MAX( 1, M-P )
  430:                LORGQROPT = INT( WORK(1) )
  431:             END IF
  432:             CALL DORGLQ( Q, Q, Q, V1T, LDV1T, 0, WORK(1), -1,
  433:      $                   CHILDINFO )
  434:             LORGLQMIN = MAX( 1, Q )
  435:             LORGLQOPT = INT( WORK(1) )
  436:             CALL DBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  437:      $                   THETA, 0, U2, LDU2, U1, LDU1, 0, 1, V1T, LDV1T,
  438:      $                   0, 0, 0, 0, 0, 0, 0, 0, WORK(1), -1,
  439:      $                   CHILDINFO )
  440:             LBBCSD = INT( WORK(1) )
  441:          END IF
  442:          LWORKMIN = MAX( IORBDB+LORBDB-1,
  443:      $                   IORGQR+LORGQRMIN-1,
  444:      $                   IORGLQ+LORGLQMIN-1,
  445:      $                   IBBCSD+LBBCSD-1 )
  446:          LWORKOPT = MAX( IORBDB+LORBDB-1,
  447:      $                   IORGQR+LORGQROPT-1,
  448:      $                   IORGLQ+LORGLQOPT-1,
  449:      $                   IBBCSD+LBBCSD-1 )
  450:          WORK(1) = LWORKOPT
  451:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  452:             INFO = -19
  453:          END IF
  454:       END IF
  455:       IF( INFO .NE. 0 ) THEN
  456:          CALL XERBLA( 'DORCSD2BY1', -INFO )
  457:          RETURN
  458:       ELSE IF( LQUERY ) THEN
  459:          RETURN
  460:       END IF
  461:       LORGQR = LWORK-IORGQR+1
  462:       LORGLQ = LWORK-IORGLQ+1
  463: *
  464: *     Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  465: *     in which R = MIN(P,M-P,Q,M-Q)
  466: *
  467:       IF( R .EQ. Q ) THEN
  468: *
  469: *        Case 1: R = Q
  470: *
  471: *        Simultaneously bidiagonalize X11 and X21
  472: *
  473:          CALL DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  474:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  475:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  476: *
  477: *        Accumulate Householder reflectors
  478: *
  479:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  480:             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  481:             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  482:      $                   LORGQR, CHILDINFO )
  483:          END IF
  484:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  485:             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  486:             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  487:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  488:          END IF
  489:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  490:             V1T(1,1) = ONE
  491:             DO J = 2, Q
  492:                V1T(1,J) = ZERO
  493:                V1T(J,1) = ZERO
  494:             END DO
  495:             CALL DLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  496:      $                   LDV1T )
  497:             CALL DORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  498:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  499:          END IF
  500: *   
  501: *        Simultaneously diagonalize X11 and X21.
  502: *   
  503:          CALL DBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  504:      $                WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1,
  505:      $                WORK(IB11D), WORK(IB11E), WORK(IB12D),
  506:      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
  507:      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  508:      $                CHILDINFO )
  509: *   
  510: *        Permute rows and columns to place zero submatrices in
  511: *        preferred positions
  512: *
  513:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  514:             DO I = 1, Q
  515:                IWORK(I) = M - P - Q + I
  516:             END DO
  517:             DO I = Q + 1, M - P
  518:                IWORK(I) = I - Q
  519:             END DO
  520:             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  521:          END IF
  522:       ELSE IF( R .EQ. P ) THEN
  523: *
  524: *        Case 2: R = P
  525: *
  526: *        Simultaneously bidiagonalize X11 and X21
  527: *
  528:          CALL DORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  529:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  530:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  531: *
  532: *        Accumulate Householder reflectors
  533: *
  534:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  535:             U1(1,1) = ONE
  536:             DO J = 2, P
  537:                U1(1,J) = ZERO
  538:                U1(J,1) = ZERO
  539:             END DO
  540:             CALL DLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  541:             CALL DORGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  542:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  543:          END IF
  544:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  545:             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  546:             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  547:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  548:          END IF
  549:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  550:             CALL DLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  551:             CALL DORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  552:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  553:          END IF
  554: *   
  555: *        Simultaneously diagonalize X11 and X21.
  556: *   
  557:          CALL DBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  558:      $                WORK(IPHI), V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2,
  559:      $                WORK(IB11D), WORK(IB11E), WORK(IB12D),
  560:      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
  561:      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  562:      $                CHILDINFO )
  563: *   
  564: *        Permute rows and columns to place identity submatrices in
  565: *        preferred positions
  566: *
  567:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  568:             DO I = 1, Q
  569:                IWORK(I) = M - P - Q + I
  570:             END DO
  571:             DO I = Q + 1, M - P
  572:                IWORK(I) = I - Q
  573:             END DO
  574:             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  575:          END IF
  576:       ELSE IF( R .EQ. M-P ) THEN
  577: *
  578: *        Case 3: R = M-P
  579: *
  580: *        Simultaneously bidiagonalize X11 and X21
  581: *
  582:          CALL DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  583:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  584:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  585: *
  586: *        Accumulate Householder reflectors
  587: *
  588:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  589:             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  590:             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  591:      $                   LORGQR, CHILDINFO )
  592:          END IF
  593:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  594:             U2(1,1) = ONE
  595:             DO J = 2, M-P
  596:                U2(1,J) = ZERO
  597:                U2(J,1) = ZERO
  598:             END DO
  599:             CALL DLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  600:      $                   LDU2 )
  601:             CALL DORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  602:      $                   WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  603:          END IF
  604:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  605:             CALL DLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  606:             CALL DORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  607:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  608:          END IF
  609: *   
  610: *        Simultaneously diagonalize X11 and X21.
  611: *   
  612:          CALL DBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  613:      $                THETA, WORK(IPHI), 0, 1, V1T, LDV1T, U2, LDU2, U1,
  614:      $                LDU1, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  615:      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
  616:      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  617:      $                CHILDINFO )
  618: *   
  619: *        Permute rows and columns to place identity submatrices in
  620: *        preferred positions
  621: *
  622:          IF( Q .GT. R ) THEN
  623:             DO I = 1, R
  624:                IWORK(I) = Q - R + I
  625:             END DO
  626:             DO I = R + 1, Q
  627:                IWORK(I) = I - R
  628:             END DO
  629:             IF( WANTU1 ) THEN
  630:                CALL DLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  631:             END IF
  632:             IF( WANTV1T ) THEN
  633:                CALL DLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  634:             END IF
  635:          END IF
  636:       ELSE
  637: *
  638: *        Case 4: R = M-Q
  639: *
  640: *        Simultaneously bidiagonalize X11 and X21
  641: *
  642:          CALL DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  643:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  644:      $                 WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  645:      $                 LORBDB-M, CHILDINFO )
  646: *
  647: *        Accumulate Householder reflectors
  648: *
  649:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  650:             CALL DCOPY( P, WORK(IORBDB), 1, U1, 1 )
  651:             DO J = 2, P
  652:                U1(1,J) = ZERO
  653:             END DO
  654:             CALL DLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  655:      $                   LDU1 )
  656:             CALL DORGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  657:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  658:          END IF
  659:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  660:             CALL DCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  661:             DO J = 2, M-P
  662:                U2(1,J) = ZERO
  663:             END DO
  664:             CALL DLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  665:      $                   LDU2 )
  666:             CALL DORGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  667:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  668:          END IF
  669:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  670:             CALL DLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  671:             CALL DLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  672:      $                   V1T(M-Q+1,M-Q+1), LDV1T )
  673:             CALL DLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  674:      $                   V1T(P+1,P+1), LDV1T )
  675:             CALL DORGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  676:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  677:          END IF
  678: *   
  679: *        Simultaneously diagonalize X11 and X21.
  680: *   
  681:          CALL DBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  682:      $                THETA, WORK(IPHI), U2, LDU2, U1, LDU1, 0, 1, V1T,
  683:      $                LDV1T, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  684:      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
  685:      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  686:      $                CHILDINFO )
  687: *   
  688: *        Permute rows and columns to place identity submatrices in
  689: *        preferred positions
  690: *
  691:          IF( P .GT. R ) THEN
  692:             DO I = 1, R
  693:                IWORK(I) = P - R + I
  694:             END DO
  695:             DO I = R + 1, P
  696:                IWORK(I) = I - R
  697:             END DO
  698:             IF( WANTU1 ) THEN
  699:                CALL DLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  700:             END IF
  701:             IF( WANTV1T ) THEN
  702:                CALL DLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  703:             END IF
  704:          END IF
  705:       END IF
  706: *
  707:       RETURN
  708: *
  709: *     End of DORCSD2BY1
  710: *
  711:       END
  712: 

CVSweb interface <joel.bertrand@systella.fr>