File:  [local] / rpl / lapack / lapack / dorcsd2by1.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:01 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DORCSD2BY1
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DORCSD2BY1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorcsd2by1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorcsd2by1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorcsd2by1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
   22: *                              X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
   23: *                              LDV1T, WORK, LWORK, IWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBU1, JOBU2, JOBV1T
   27: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
   28: *      $                   M, P, Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   THETA(*)
   32: *       DOUBLE PRECISION   U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
   33: *      $                   X11(LDX11,*), X21(LDX21,*)
   34: *       INTEGER            IWORK(*)
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *>\verbatim
   42: *>
   43: *> DORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
   44: *> orthonormal columns that has been partitioned into a 2-by-1 block
   45: *> structure:
   46: *>
   47: *>                                [  I1 0  0 ]
   48: *>                                [  0  C  0 ]
   49: *>          [ X11 ]   [ U1 |    ] [  0  0  0 ]
   50: *>      X = [-----] = [---------] [----------] V1**T .
   51: *>          [ X21 ]   [    | U2 ] [  0  0  0 ]
   52: *>                                [  0  S  0 ]
   53: *>                                [  0  0  I2]
   54: *>
   55: *> X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P,
   56: *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
   57: *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
   58: *> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
   59: *> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
   60: *> \endverbatim
   61: *
   62: *  Arguments:
   63: *  ==========
   64: *
   65: *> \param[in] JOBU1
   66: *> \verbatim
   67: *>          JOBU1 is CHARACTER
   68: *>          = 'Y':      U1 is computed;
   69: *>          otherwise:  U1 is not computed.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] JOBU2
   73: *> \verbatim
   74: *>          JOBU2 is CHARACTER
   75: *>          = 'Y':      U2 is computed;
   76: *>          otherwise:  U2 is not computed.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] JOBV1T
   80: *> \verbatim
   81: *>          JOBV1T is CHARACTER
   82: *>          = 'Y':      V1T is computed;
   83: *>          otherwise:  V1T is not computed.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] M
   87: *> \verbatim
   88: *>          M is INTEGER
   89: *>          The number of rows in X.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] P
   93: *> \verbatim
   94: *>          P is INTEGER
   95: *>          The number of rows in X11. 0 <= P <= M.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] Q
   99: *> \verbatim
  100: *>          Q is INTEGER
  101: *>          The number of columns in X11 and X21. 0 <= Q <= M.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] X11
  105: *> \verbatim
  106: *>          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
  107: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] LDX11
  111: *> \verbatim
  112: *>          LDX11 is INTEGER
  113: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
  114: *> \endverbatim
  115: *>
  116: *> \param[in,out] X21
  117: *> \verbatim
  118: *>          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
  119: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] LDX21
  123: *> \verbatim
  124: *>          LDX21 is INTEGER
  125: *>          The leading dimension of X21. LDX21 >= MAX(1,M-P).
  126: *> \endverbatim
  127: *>
  128: *> \param[out] THETA
  129: *> \verbatim
  130: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
  131: *>          MIN(P,M-P,Q,M-Q).
  132: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  133: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  134: *> \endverbatim
  135: *>
  136: *> \param[out] U1
  137: *> \verbatim
  138: *>          U1 is DOUBLE PRECISION array, dimension (P)
  139: *>          If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
  140: *> \endverbatim
  141: *>
  142: *> \param[in] LDU1
  143: *> \verbatim
  144: *>          LDU1 is INTEGER
  145: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  146: *>          MAX(1,P).
  147: *> \endverbatim
  148: *>
  149: *> \param[out] U2
  150: *> \verbatim
  151: *>          U2 is DOUBLE PRECISION array, dimension (M-P)
  152: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
  153: *>          matrix U2.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDU2
  157: *> \verbatim
  158: *>          LDU2 is INTEGER
  159: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  160: *>          MAX(1,M-P).
  161: *> \endverbatim
  162: *>
  163: *> \param[out] V1T
  164: *> \verbatim
  165: *>          V1T is DOUBLE PRECISION array, dimension (Q)
  166: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
  167: *>          matrix V1**T.
  168: *> \endverbatim
  169: *>
  170: *> \param[in] LDV1T
  171: *> \verbatim
  172: *>          LDV1T is INTEGER
  173: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  174: *>          MAX(1,Q).
  175: *> \endverbatim
  176: *>
  177: *> \param[out] WORK
  178: *> \verbatim
  179: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  180: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  181: *>          If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
  182: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  183: *>          define the matrix in intermediate bidiagonal-block form
  184: *>          remaining after nonconvergence. INFO specifies the number
  185: *>          of nonzero PHI's.
  186: *> \endverbatim
  187: *>
  188: *> \param[in] LWORK
  189: *> \verbatim
  190: *>          LWORK is INTEGER
  191: *>          The dimension of the array WORK.
  192: *>
  193: *>          If LWORK = -1, then a workspace query is assumed; the routine
  194: *>          only calculates the optimal size of the WORK array, returns
  195: *>          this value as the first entry of the work array, and no error
  196: *>          message related to LWORK is issued by XERBLA.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] IWORK
  200: *> \verbatim
  201: *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  202: *> \endverbatim
  203: *>
  204: *> \param[out] INFO
  205: *> \verbatim
  206: *>          INFO is INTEGER
  207: *>          = 0:  successful exit.
  208: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  209: *>          > 0:  DBBCSD did not converge. See the description of WORK
  210: *>                above for details.
  211: *> \endverbatim
  212: *
  213: *> \par References:
  214: *  ================
  215: *>
  216: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  217: *>      Algorithms, 50(1):33-65, 2009.
  218: *
  219: *  Authors:
  220: *  ========
  221: *
  222: *> \author Univ. of Tennessee
  223: *> \author Univ. of California Berkeley
  224: *> \author Univ. of Colorado Denver
  225: *> \author NAG Ltd.
  226: *
  227: *> \ingroup doubleOTHERcomputational
  228: *
  229: *  =====================================================================
  230:       SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  231:      $                       X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  232:      $                       LDV1T, WORK, LWORK, IWORK, INFO )
  233: *
  234: *  -- LAPACK computational routine (3.5.0) --
  235: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  236: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  237: *
  238: *     .. Scalar Arguments ..
  239:       CHARACTER          JOBU1, JOBU2, JOBV1T
  240:       INTEGER            INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  241:      $                   M, P, Q
  242: *     ..
  243: *     .. Array Arguments ..
  244:       DOUBLE PRECISION   THETA(*)
  245:       DOUBLE PRECISION   U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  246:      $                   X11(LDX11,*), X21(LDX21,*)
  247:       INTEGER            IWORK(*)
  248: *     ..
  249: *
  250: *  =====================================================================
  251: *
  252: *     .. Parameters ..
  253:       DOUBLE PRECISION   ONE, ZERO
  254:       PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
  255: *     ..
  256: *     .. Local Scalars ..
  257:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  258:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  259:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  260:      $                   J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  261:      $                   LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  262:      $                   LWORKMIN, LWORKOPT, R
  263:       LOGICAL            LQUERY, WANTU1, WANTU2, WANTV1T
  264: *     ..
  265: *     .. Local Arrays ..
  266:       DOUBLE PRECISION   DUM1(1), DUM2(1,1)
  267: *     ..
  268: *     .. External Subroutines ..
  269:       EXTERNAL           DBBCSD, DCOPY, DLACPY, DLAPMR, DLAPMT, DORBDB1,
  270:      $                   DORBDB2, DORBDB3, DORBDB4, DORGLQ, DORGQR,
  271:      $                   XERBLA
  272: *     ..
  273: *     .. External Functions ..
  274:       LOGICAL            LSAME
  275:       EXTERNAL           LSAME
  276: *     ..
  277: *     .. Intrinsic Function ..
  278:       INTRINSIC          INT, MAX, MIN
  279: *     ..
  280: *     .. Executable Statements ..
  281: *
  282: *     Test input arguments
  283: *
  284:       INFO = 0
  285:       WANTU1 = LSAME( JOBU1, 'Y' )
  286:       WANTU2 = LSAME( JOBU2, 'Y' )
  287:       WANTV1T = LSAME( JOBV1T, 'Y' )
  288:       LQUERY = LWORK .EQ. -1
  289: *
  290:       IF( M .LT. 0 ) THEN
  291:          INFO = -4
  292:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  293:          INFO = -5
  294:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  295:          INFO = -6
  296:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  297:          INFO = -8
  298:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  299:          INFO = -10
  300:       ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
  301:          INFO = -13
  302:       ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
  303:          INFO = -15
  304:       ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
  305:          INFO = -17
  306:       END IF
  307: *
  308:       R = MIN( P, M-P, Q, M-Q )
  309: *
  310: *     Compute workspace
  311: *
  312: *       WORK layout:
  313: *     |-------------------------------------------------------|
  314: *     | LWORKOPT (1)                                          |
  315: *     |-------------------------------------------------------|
  316: *     | PHI (MAX(1,R-1))                                      |
  317: *     |-------------------------------------------------------|
  318: *     | TAUP1 (MAX(1,P))                        | B11D (R)    |
  319: *     | TAUP2 (MAX(1,M-P))                      | B11E (R-1)  |
  320: *     | TAUQ1 (MAX(1,Q))                        | B12D (R)    |
  321: *     |-----------------------------------------| B12E (R-1)  |
  322: *     | DORBDB WORK | DORGQR WORK | DORGLQ WORK | B21D (R)    |
  323: *     |             |             |             | B21E (R-1)  |
  324: *     |             |             |             | B22D (R)    |
  325: *     |             |             |             | B22E (R-1)  |
  326: *     |             |             |             | DBBCSD WORK |
  327: *     |-------------------------------------------------------|
  328: *
  329:       IF( INFO .EQ. 0 ) THEN
  330:          IPHI = 2
  331:          IB11D = IPHI + MAX( 1, R-1 )
  332:          IB11E = IB11D + MAX( 1, R )
  333:          IB12D = IB11E + MAX( 1, R - 1 )
  334:          IB12E = IB12D + MAX( 1, R )
  335:          IB21D = IB12E + MAX( 1, R - 1 )
  336:          IB21E = IB21D + MAX( 1, R )
  337:          IB22D = IB21E + MAX( 1, R - 1 )
  338:          IB22E = IB22D + MAX( 1, R )
  339:          IBBCSD = IB22E + MAX( 1, R - 1 )
  340:          ITAUP1 = IPHI + MAX( 1, R-1 )
  341:          ITAUP2 = ITAUP1 + MAX( 1, P )
  342:          ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  343:          IORBDB = ITAUQ1 + MAX( 1, Q )
  344:          IORGQR = ITAUQ1 + MAX( 1, Q )
  345:          IORGLQ = ITAUQ1 + MAX( 1, Q )
  346:          LORGQRMIN = 1
  347:          LORGQROPT = 1
  348:          LORGLQMIN = 1
  349:          LORGLQOPT = 1
  350:          IF( R .EQ. Q ) THEN
  351:             CALL DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  352:      $                    DUM1, DUM1, DUM1, DUM1, WORK,
  353:      $                    -1, CHILDINFO )
  354:             LORBDB = INT( WORK(1) )
  355:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  356:                CALL DORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1,
  357:      $                      CHILDINFO )
  358:                LORGQRMIN = MAX( LORGQRMIN, P )
  359:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  360:             ENDIF
  361:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  362:                CALL DORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1),
  363:      $                      -1, CHILDINFO )
  364:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  365:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  366:             END IF
  367:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  368:                CALL DORGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
  369:      $                      DUM1, WORK(1), -1, CHILDINFO )
  370:                LORGLQMIN = MAX( LORGLQMIN, Q-1 )
  371:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  372:             END IF
  373:             CALL DBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  374:      $                   DUM1, U1, LDU1, U2, LDU2, V1T, LDV1T,
  375:      $                   DUM2, 1, DUM1, DUM1, DUM1,
  376:      $                   DUM1, DUM1, DUM1, DUM1,
  377:      $                   DUM1, WORK(1), -1, CHILDINFO )
  378:             LBBCSD = INT( WORK(1) )
  379:          ELSE IF( R .EQ. P ) THEN
  380:             CALL DORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  381:      $                    DUM1, DUM1, DUM1, DUM1,
  382:      $                    WORK(1), -1, CHILDINFO )
  383:             LORBDB = INT( WORK(1) )
  384:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  385:                CALL DORGQR( P-1, P-1, P-1, U1(2,2), LDU1, DUM1,
  386:      $                      WORK(1), -1, CHILDINFO )
  387:                LORGQRMIN = MAX( LORGQRMIN, P-1 )
  388:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  389:             END IF
  390:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  391:                CALL DORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1),
  392:      $                      -1, CHILDINFO )
  393:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  394:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  395:             END IF
  396:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  397:                CALL DORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1,
  398:      $                      CHILDINFO )
  399:                LORGLQMIN = MAX( LORGLQMIN, Q )
  400:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  401:             END IF
  402:             CALL DBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  403:      $                   DUM1, V1T, LDV1T, DUM2, 1, U1, LDU1,
  404:      $                   U2, LDU2, DUM1, DUM1, DUM1,
  405:      $                   DUM1, DUM1, DUM1, DUM1,
  406:      $                   DUM1, WORK(1), -1, CHILDINFO )
  407:             LBBCSD = INT( WORK(1) )
  408:          ELSE IF( R .EQ. M-P ) THEN
  409:             CALL DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  410:      $                    DUM1, DUM1, DUM1, DUM1,
  411:      $                    WORK(1), -1, CHILDINFO )
  412:             LORBDB = INT( WORK(1) )
  413:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  414:                CALL DORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1,
  415:      $                      CHILDINFO )
  416:                LORGQRMIN = MAX( LORGQRMIN, P )
  417:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  418:             END IF
  419:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  420:                CALL DORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  421:      $                      DUM1, WORK(1), -1, CHILDINFO )
  422:                LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
  423:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  424:             END IF
  425:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  426:                CALL DORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1,
  427:      $                      CHILDINFO )
  428:                LORGLQMIN = MAX( LORGLQMIN, Q )
  429:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  430:             END IF
  431:             CALL DBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  432:      $                   THETA, DUM1, DUM2, 1, V1T, LDV1T, U2,
  433:      $                   LDU2, U1, LDU1, DUM1, DUM1, DUM1,
  434:      $                   DUM1, DUM1, DUM1, DUM1,
  435:      $                   DUM1, WORK(1), -1, CHILDINFO )
  436:             LBBCSD = INT( WORK(1) )
  437:          ELSE
  438:             CALL DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  439:      $                    DUM1, DUM1, DUM1, DUM1,
  440:      $                    DUM1, WORK(1), -1, CHILDINFO )
  441:             LORBDB = M + INT( WORK(1) )
  442:             IF( WANTU1 .AND. P .GT. 0 ) THEN
  443:                CALL DORGQR( P, P, M-Q, U1, LDU1, DUM1, WORK(1), -1,
  444:      $                      CHILDINFO )
  445:                LORGQRMIN = MAX( LORGQRMIN, P )
  446:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  447:             END IF
  448:             IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  449:                CALL DORGQR( M-P, M-P, M-Q, U2, LDU2, DUM1, WORK(1),
  450:      $                      -1, CHILDINFO )
  451:                LORGQRMIN = MAX( LORGQRMIN, M-P )
  452:                LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  453:             END IF
  454:             IF( WANTV1T .AND. Q .GT. 0 ) THEN
  455:                CALL DORGLQ( Q, Q, Q, V1T, LDV1T, DUM1, WORK(1), -1,
  456:      $                      CHILDINFO )
  457:                LORGLQMIN = MAX( LORGLQMIN, Q )
  458:                LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  459:             END IF
  460:             CALL DBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  461:      $                   THETA, DUM1, U2, LDU2, U1, LDU1, DUM2,
  462:      $                   1, V1T, LDV1T, DUM1, DUM1, DUM1,
  463:      $                   DUM1, DUM1, DUM1, DUM1,
  464:      $                   DUM1, WORK(1), -1, CHILDINFO )
  465:             LBBCSD = INT( WORK(1) )
  466:          END IF
  467:          LWORKMIN = MAX( IORBDB+LORBDB-1,
  468:      $                   IORGQR+LORGQRMIN-1,
  469:      $                   IORGLQ+LORGLQMIN-1,
  470:      $                   IBBCSD+LBBCSD-1 )
  471:          LWORKOPT = MAX( IORBDB+LORBDB-1,
  472:      $                   IORGQR+LORGQROPT-1,
  473:      $                   IORGLQ+LORGLQOPT-1,
  474:      $                   IBBCSD+LBBCSD-1 )
  475:          WORK(1) = LWORKOPT
  476:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  477:             INFO = -19
  478:          END IF
  479:       END IF
  480:       IF( INFO .NE. 0 ) THEN
  481:          CALL XERBLA( 'DORCSD2BY1', -INFO )
  482:          RETURN
  483:       ELSE IF( LQUERY ) THEN
  484:          RETURN
  485:       END IF
  486:       LORGQR = LWORK-IORGQR+1
  487:       LORGLQ = LWORK-IORGLQ+1
  488: *
  489: *     Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  490: *     in which R = MIN(P,M-P,Q,M-Q)
  491: *
  492:       IF( R .EQ. Q ) THEN
  493: *
  494: *        Case 1: R = Q
  495: *
  496: *        Simultaneously bidiagonalize X11 and X21
  497: *
  498:          CALL DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  499:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  500:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  501: *
  502: *        Accumulate Householder reflectors
  503: *
  504:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  505:             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  506:             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  507:      $                   LORGQR, CHILDINFO )
  508:          END IF
  509:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  510:             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  511:             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  512:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  513:          END IF
  514:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  515:             V1T(1,1) = ONE
  516:             DO J = 2, Q
  517:                V1T(1,J) = ZERO
  518:                V1T(J,1) = ZERO
  519:             END DO
  520:             CALL DLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  521:      $                   LDV1T )
  522:             CALL DORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  523:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  524:          END IF
  525: *
  526: *        Simultaneously diagonalize X11 and X21.
  527: *
  528:          CALL DBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  529:      $                WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T,
  530:      $                DUM2, 1, WORK(IB11D), WORK(IB11E),
  531:      $                WORK(IB12D), WORK(IB12E), WORK(IB21D),
  532:      $                WORK(IB21E), WORK(IB22D), WORK(IB22E),
  533:      $                WORK(IBBCSD), LBBCSD, CHILDINFO )
  534: *
  535: *        Permute rows and columns to place zero submatrices in
  536: *        preferred positions
  537: *
  538:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  539:             DO I = 1, Q
  540:                IWORK(I) = M - P - Q + I
  541:             END DO
  542:             DO I = Q + 1, M - P
  543:                IWORK(I) = I - Q
  544:             END DO
  545:             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  546:          END IF
  547:       ELSE IF( R .EQ. P ) THEN
  548: *
  549: *        Case 2: R = P
  550: *
  551: *        Simultaneously bidiagonalize X11 and X21
  552: *
  553:          CALL DORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  554:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  555:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  556: *
  557: *        Accumulate Householder reflectors
  558: *
  559:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  560:             U1(1,1) = ONE
  561:             DO J = 2, P
  562:                U1(1,J) = ZERO
  563:                U1(J,1) = ZERO
  564:             END DO
  565:             CALL DLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  566:             CALL DORGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  567:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  568:          END IF
  569:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  570:             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  571:             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  572:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  573:          END IF
  574:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  575:             CALL DLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  576:             CALL DORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  577:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  578:          END IF
  579: *
  580: *        Simultaneously diagonalize X11 and X21.
  581: *
  582:          CALL DBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  583:      $                WORK(IPHI), V1T, LDV1T, DUM1, 1, U1, LDU1, U2,
  584:      $                LDU2, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  585:      $                WORK(IB12E), WORK(IB21D), WORK(IB21E),
  586:      $                WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  587:      $                CHILDINFO )
  588: *
  589: *        Permute rows and columns to place identity submatrices in
  590: *        preferred positions
  591: *
  592:          IF( Q .GT. 0 .AND. WANTU2 ) THEN
  593:             DO I = 1, Q
  594:                IWORK(I) = M - P - Q + I
  595:             END DO
  596:             DO I = Q + 1, M - P
  597:                IWORK(I) = I - Q
  598:             END DO
  599:             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  600:          END IF
  601:       ELSE IF( R .EQ. M-P ) THEN
  602: *
  603: *        Case 3: R = M-P
  604: *
  605: *        Simultaneously bidiagonalize X11 and X21
  606: *
  607:          CALL DORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  608:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  609:      $                 WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  610: *
  611: *        Accumulate Householder reflectors
  612: *
  613:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  614:             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  615:             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  616:      $                   LORGQR, CHILDINFO )
  617:          END IF
  618:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  619:             U2(1,1) = ONE
  620:             DO J = 2, M-P
  621:                U2(1,J) = ZERO
  622:                U2(J,1) = ZERO
  623:             END DO
  624:             CALL DLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  625:      $                   LDU2 )
  626:             CALL DORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  627:      $                   WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  628:          END IF
  629:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  630:             CALL DLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  631:             CALL DORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  632:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  633:          END IF
  634: *
  635: *        Simultaneously diagonalize X11 and X21.
  636: *
  637:          CALL DBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  638:      $                THETA, WORK(IPHI), DUM1, 1, V1T, LDV1T, U2,
  639:      $                LDU2, U1, LDU1, WORK(IB11D), WORK(IB11E),
  640:      $                WORK(IB12D), WORK(IB12E), WORK(IB21D),
  641:      $                WORK(IB21E), WORK(IB22D), WORK(IB22E),
  642:      $                WORK(IBBCSD), LBBCSD, CHILDINFO )
  643: *
  644: *        Permute rows and columns to place identity submatrices in
  645: *        preferred positions
  646: *
  647:          IF( Q .GT. R ) THEN
  648:             DO I = 1, R
  649:                IWORK(I) = Q - R + I
  650:             END DO
  651:             DO I = R + 1, Q
  652:                IWORK(I) = I - R
  653:             END DO
  654:             IF( WANTU1 ) THEN
  655:                CALL DLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  656:             END IF
  657:             IF( WANTV1T ) THEN
  658:                CALL DLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  659:             END IF
  660:          END IF
  661:       ELSE
  662: *
  663: *        Case 4: R = M-Q
  664: *
  665: *        Simultaneously bidiagonalize X11 and X21
  666: *
  667:          CALL DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  668:      $                 WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  669:      $                 WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  670:      $                 LORBDB-M, CHILDINFO )
  671: *
  672: *        Accumulate Householder reflectors
  673: *
  674:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  675:             CALL DCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  676:          END IF
  677:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  678:             CALL DCOPY( P, WORK(IORBDB), 1, U1, 1 )
  679:             DO J = 2, P
  680:                U1(1,J) = ZERO
  681:             END DO
  682:             CALL DLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  683:      $                   LDU1 )
  684:             CALL DORGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  685:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  686:          END IF
  687:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  688:             DO J = 2, M-P
  689:                U2(1,J) = ZERO
  690:             END DO
  691:             CALL DLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  692:      $                   LDU2 )
  693:             CALL DORGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  694:      $                   WORK(IORGQR), LORGQR, CHILDINFO )
  695:          END IF
  696:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  697:             CALL DLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  698:             CALL DLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  699:      $                   V1T(M-Q+1,M-Q+1), LDV1T )
  700:             CALL DLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  701:      $                   V1T(P+1,P+1), LDV1T )
  702:             CALL DORGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  703:      $                   WORK(IORGLQ), LORGLQ, CHILDINFO )
  704:          END IF
  705: *
  706: *        Simultaneously diagonalize X11 and X21.
  707: *
  708:          CALL DBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  709:      $                THETA, WORK(IPHI), U2, LDU2, U1, LDU1, DUM1,
  710:      $                1, V1T, LDV1T, WORK(IB11D), WORK(IB11E),
  711:      $                WORK(IB12D), WORK(IB12E), WORK(IB21D),
  712:      $                WORK(IB21E), WORK(IB22D), WORK(IB22E),
  713:      $                WORK(IBBCSD), LBBCSD, CHILDINFO )
  714: *
  715: *        Permute rows and columns to place identity submatrices in
  716: *        preferred positions
  717: *
  718:          IF( P .GT. R ) THEN
  719:             DO I = 1, R
  720:                IWORK(I) = P - R + I
  721:             END DO
  722:             DO I = R + 1, P
  723:                IWORK(I) = I - R
  724:             END DO
  725:             IF( WANTU1 ) THEN
  726:                CALL DLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  727:             END IF
  728:             IF( WANTV1T ) THEN
  729:                CALL DLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  730:             END IF
  731:          END IF
  732:       END IF
  733: *
  734:       RETURN
  735: *
  736: *     End of DORCSD2BY1
  737: *
  738:       END
  739: 

CVSweb interface <joel.bertrand@systella.fr>