File:  [local] / rpl / lapack / lapack / dorcsd.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:00 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DORCSD
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DORCSD + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorcsd.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorcsd.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorcsd.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       RECURSIVE SUBROUTINE DORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
   22: *                                    SIGNS, M, P, Q, X11, LDX11, X12,
   23: *                                    LDX12, X21, LDX21, X22, LDX22, THETA,
   24: *                                    U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
   25: *                                    LDV2T, WORK, LWORK, IWORK, INFO )
   26:    27: *       .. Scalar Arguments ..
   28: *       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
   29: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
   30: *      $                   LDX21, LDX22, LWORK, M, P, Q
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       INTEGER            IWORK( * )
   34: *       DOUBLE PRECISION   THETA( * )
   35: *       DOUBLE PRECISION   U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
   36: *      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
   37: *      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
   38: *      $                   * )
   39: *       ..
   40: *  
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *> DORCSD computes the CS decomposition of an M-by-M partitioned
   48: *> orthogonal matrix X:
   49: *>
   50: *>                                 [  I  0  0 |  0  0  0 ]
   51: *>                                 [  0  C  0 |  0 -S  0 ]
   52: *>     [ X11 | X12 ]   [ U1 |    ] [  0  0  0 |  0  0 -I ] [ V1 |    ]**T
   53: *> X = [-----------] = [---------] [---------------------] [---------]   .
   54: *>     [ X21 | X22 ]   [    | U2 ] [  0  0  0 |  I  0  0 ] [    | V2 ]
   55: *>                                 [  0  S  0 |  0  C  0 ]
   56: *>                                 [  0  0  I |  0  0  0 ]
   57: *>
   58: *> X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P,
   59: *> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
   60: *> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
   61: *> which R = MIN(P,M-P,Q,M-Q).
   62: *> \endverbatim
   63: *
   64: *  Arguments:
   65: *  ==========
   66: *
   67: *> \param[in] JOBU1
   68: *> \verbatim
   69: *>          JOBU1 is CHARACTER
   70: *>          = 'Y':      U1 is computed;
   71: *>          otherwise:  U1 is not computed.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] JOBU2
   75: *> \verbatim
   76: *>          JOBU2 is CHARACTER
   77: *>          = 'Y':      U2 is computed;
   78: *>          otherwise:  U2 is not computed.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] JOBV1T
   82: *> \verbatim
   83: *>          JOBV1T is CHARACTER
   84: *>          = 'Y':      V1T is computed;
   85: *>          otherwise:  V1T is not computed.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] JOBV2T
   89: *> \verbatim
   90: *>          JOBV2T is CHARACTER
   91: *>          = 'Y':      V2T is computed;
   92: *>          otherwise:  V2T is not computed.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] TRANS
   96: *> \verbatim
   97: *>          TRANS is CHARACTER
   98: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
   99: *>                      order;
  100: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
  101: *>                      major order.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] SIGNS
  105: *> \verbatim
  106: *>          SIGNS is CHARACTER
  107: *>          = 'O':      The lower-left block is made nonpositive (the
  108: *>                      "other" convention);
  109: *>          otherwise:  The upper-right block is made nonpositive (the
  110: *>                      "default" convention).
  111: *> \endverbatim
  112: *>
  113: *> \param[in] M
  114: *> \verbatim
  115: *>          M is INTEGER
  116: *>          The number of rows and columns in X.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] P
  120: *> \verbatim
  121: *>          P is INTEGER
  122: *>          The number of rows in X11 and X12. 0 <= P <= M.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] Q
  126: *> \verbatim
  127: *>          Q is INTEGER
  128: *>          The number of columns in X11 and X21. 0 <= Q <= M.
  129: *> \endverbatim
  130: *>
  131: *> \param[in,out] X11
  132: *> \verbatim
  133: *>          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
  134: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] LDX11
  138: *> \verbatim
  139: *>          LDX11 is INTEGER
  140: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
  141: *> \endverbatim
  142: *>
  143: *> \param[in,out] X12
  144: *> \verbatim
  145: *>          X12 is DOUBLE PRECISION array, dimension (LDX12,M-Q)
  146: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  147: *> \endverbatim
  148: *>
  149: *> \param[in] LDX12
  150: *> \verbatim
  151: *>          LDX12 is INTEGER
  152: *>          The leading dimension of X12. LDX12 >= MAX(1,P).
  153: *> \endverbatim
  154: *>
  155: *> \param[in,out] X21
  156: *> \verbatim
  157: *>          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
  158: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  159: *> \endverbatim
  160: *>
  161: *> \param[in] LDX21
  162: *> \verbatim
  163: *>          LDX21 is INTEGER
  164: *>          The leading dimension of X11. LDX21 >= MAX(1,M-P).
  165: *> \endverbatim
  166: *>
  167: *> \param[in,out] X22
  168: *> \verbatim
  169: *>          X22 is DOUBLE PRECISION array, dimension (LDX22,M-Q)
  170: *>          On entry, part of the orthogonal matrix whose CSD is desired.
  171: *> \endverbatim
  172: *>
  173: *> \param[in] LDX22
  174: *> \verbatim
  175: *>          LDX22 is INTEGER
  176: *>          The leading dimension of X11. LDX22 >= MAX(1,M-P).
  177: *> \endverbatim
  178: *>
  179: *> \param[out] THETA
  180: *> \verbatim
  181: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
  182: *>          MIN(P,M-P,Q,M-Q).
  183: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  184: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  185: *> \endverbatim
  186: *>
  187: *> \param[out] U1
  188: *> \verbatim
  189: *>          U1 is DOUBLE PRECISION array, dimension (P)
  190: *>          If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
  191: *> \endverbatim
  192: *>
  193: *> \param[in] LDU1
  194: *> \verbatim
  195: *>          LDU1 is INTEGER
  196: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  197: *>          MAX(1,P).
  198: *> \endverbatim
  199: *>
  200: *> \param[out] U2
  201: *> \verbatim
  202: *>          U2 is DOUBLE PRECISION array, dimension (M-P)
  203: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
  204: *>          matrix U2.
  205: *> \endverbatim
  206: *>
  207: *> \param[in] LDU2
  208: *> \verbatim
  209: *>          LDU2 is INTEGER
  210: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  211: *>          MAX(1,M-P).
  212: *> \endverbatim
  213: *>
  214: *> \param[out] V1T
  215: *> \verbatim
  216: *>          V1T is DOUBLE PRECISION array, dimension (Q)
  217: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
  218: *>          matrix V1**T.
  219: *> \endverbatim
  220: *>
  221: *> \param[in] LDV1T
  222: *> \verbatim
  223: *>          LDV1T is INTEGER
  224: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  225: *>          MAX(1,Q).
  226: *> \endverbatim
  227: *>
  228: *> \param[out] V2T
  229: *> \verbatim
  230: *>          V2T is DOUBLE PRECISION array, dimension (M-Q)
  231: *>          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal
  232: *>          matrix V2**T.
  233: *> \endverbatim
  234: *>
  235: *> \param[in] LDV2T
  236: *> \verbatim
  237: *>          LDV2T is INTEGER
  238: *>          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
  239: *>          MAX(1,M-Q).
  240: *> \endverbatim
  241: *>
  242: *> \param[out] WORK
  243: *> \verbatim
  244: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  245: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  246: *>          If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
  247: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  248: *>          define the matrix in intermediate bidiagonal-block form
  249: *>          remaining after nonconvergence. INFO specifies the number
  250: *>          of nonzero PHI's.
  251: *> \endverbatim
  252: *>
  253: *> \param[in] LWORK
  254: *> \verbatim
  255: *>          LWORK is INTEGER
  256: *>          The dimension of the array WORK.
  257: *>
  258: *>          If LWORK = -1, then a workspace query is assumed; the routine
  259: *>          only calculates the optimal size of the WORK array, returns
  260: *>          this value as the first entry of the work array, and no error
  261: *>          message related to LWORK is issued by XERBLA.
  262: *> \endverbatim
  263: *>
  264: *> \param[out] IWORK
  265: *> \verbatim
  266: *>          IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q))
  267: *> \endverbatim
  268: *>
  269: *> \param[out] INFO
  270: *> \verbatim
  271: *>          INFO is INTEGER
  272: *>          = 0:  successful exit.
  273: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  274: *>          > 0:  DBBCSD did not converge. See the description of WORK
  275: *>                above for details.
  276: *> \endverbatim
  277: *
  278: *> \par References:
  279: *  ================
  280: *>
  281: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  282: *>      Algorithms, 50(1):33-65, 2009.
  283: *
  284: *  Authors:
  285: *  ========
  286: *
  287: *> \author Univ. of Tennessee 
  288: *> \author Univ. of California Berkeley 
  289: *> \author Univ. of Colorado Denver 
  290: *> \author NAG Ltd. 
  291: *
  292: *> \date November 2011
  293: *
  294: *> \ingroup doubleOTHERcomputational
  295: *
  296: *  =====================================================================
  297:       RECURSIVE SUBROUTINE DORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
  298:      $                             SIGNS, M, P, Q, X11, LDX11, X12,
  299:      $                             LDX12, X21, LDX21, X22, LDX22, THETA,
  300:      $                             U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
  301:      $                             LDV2T, WORK, LWORK, IWORK, INFO )
  302: *
  303: *  -- LAPACK computational routine (version 3.4.0) --
  304: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  305: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  306: *     November 2011
  307: *
  308: *     .. Scalar Arguments ..
  309:       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
  310:       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
  311:      $                   LDX21, LDX22, LWORK, M, P, Q
  312: *     ..
  313: *     .. Array Arguments ..
  314:       INTEGER            IWORK( * )
  315:       DOUBLE PRECISION   THETA( * )
  316:       DOUBLE PRECISION   U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
  317:      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
  318:      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
  319:      $                   * )
  320: *     ..
  321: *
  322: *  ===================================================================
  323: *
  324: *     .. Parameters ..
  325:       DOUBLE PRECISION   REALONE
  326:       PARAMETER          ( REALONE = 1.0D0 )
  327:       DOUBLE PRECISION   NEGONE, ONE, PIOVER2, ZERO
  328:       PARAMETER          ( NEGONE = -1.0D0, ONE = 1.0D0,
  329:      $                     PIOVER2 = 1.57079632679489662D0,
  330:      $                     ZERO = 0.0D0 )
  331: *     ..
  332: *     .. Local Scalars ..
  333:       CHARACTER          TRANST, SIGNST
  334:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  335:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  336:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  337:      $                   ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
  338:      $                   LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
  339:      $                   LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
  340:      $                   LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
  341:      $                   LORGQRWORKOPT, LWORKMIN, LWORKOPT
  342:       LOGICAL            COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
  343:      $                   WANTV1T, WANTV2T
  344: *     ..
  345: *     .. External Subroutines ..
  346:       EXTERNAL           DBBCSD, DLACPY, DLAPMR, DLAPMT, DLASCL, DLASET,
  347:      $                   DORBDB, DORGLQ, DORGQR, XERBLA
  348: *     ..
  349: *     .. External Functions ..
  350:       LOGICAL            LSAME
  351:       EXTERNAL           LSAME
  352: *     ..
  353: *     .. Intrinsic Functions
  354:       INTRINSIC          INT, MAX, MIN
  355: *     ..
  356: *     .. Executable Statements ..
  357: *
  358: *     Test input arguments
  359: *
  360:       INFO = 0
  361:       WANTU1 = LSAME( JOBU1, 'Y' )
  362:       WANTU2 = LSAME( JOBU2, 'Y' )
  363:       WANTV1T = LSAME( JOBV1T, 'Y' )
  364:       WANTV2T = LSAME( JOBV2T, 'Y' )
  365:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  366:       DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
  367:       LQUERY = LWORK .EQ. -1
  368:       IF( M .LT. 0 ) THEN
  369:          INFO = -7
  370:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  371:          INFO = -8
  372:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  373:          INFO = -9
  374:       ELSE IF( ( COLMAJOR .AND. LDX11 .LT. MAX(1,P) ) .OR.
  375:      $         ( .NOT.COLMAJOR .AND. LDX11 .LT. MAX(1,Q) ) ) THEN
  376:          INFO = -11
  377:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  378:          INFO = -20
  379:       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
  380:          INFO = -22
  381:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  382:          INFO = -24
  383:       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
  384:          INFO = -26
  385:       END IF
  386: *
  387: *     Work with transpose if convenient
  388: *
  389:       IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
  390:          IF( COLMAJOR ) THEN
  391:             TRANST = 'T'
  392:          ELSE
  393:             TRANST = 'N'
  394:          END IF
  395:          IF( DEFAULTSIGNS ) THEN
  396:             SIGNST = 'O'
  397:          ELSE
  398:             SIGNST = 'D'
  399:          END IF
  400:          CALL DORCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
  401:      $                Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
  402:      $                LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
  403:      $                U2, LDU2, WORK, LWORK, IWORK, INFO )
  404:          RETURN
  405:       END IF
  406: *
  407: *     Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
  408: *     convenient
  409: *
  410:       IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
  411:          IF( DEFAULTSIGNS ) THEN
  412:             SIGNST = 'O'
  413:          ELSE
  414:             SIGNST = 'D'
  415:          END IF
  416:          CALL DORCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
  417:      $                M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
  418:      $                LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
  419:      $                LDV1T, WORK, LWORK, IWORK, INFO )
  420:          RETURN
  421:       END IF
  422: *
  423: *     Compute workspace
  424: *
  425:       IF( INFO .EQ. 0 ) THEN
  426: *
  427:          IPHI = 2
  428:          ITAUP1 = IPHI + MAX( 1, Q - 1 )
  429:          ITAUP2 = ITAUP1 + MAX( 1, P )
  430:          ITAUQ1 = ITAUP2 + MAX( 1, M - P )
  431:          ITAUQ2 = ITAUQ1 + MAX( 1, Q )
  432:          IORGQR = ITAUQ2 + MAX( 1, M - Q )
  433:          CALL DORGQR( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1,
  434:      $                CHILDINFO )
  435:          LORGQRWORKOPT = INT( WORK(1) )
  436:          LORGQRWORKMIN = MAX( 1, M - Q )
  437:          IORGLQ = ITAUQ2 + MAX( 1, M - Q )
  438:          CALL DORGLQ( M-Q, M-Q, M-Q, 0, MAX(1,M-Q), 0, WORK, -1,
  439:      $                CHILDINFO )
  440:          LORGLQWORKOPT = INT( WORK(1) )
  441:          LORGLQWORKMIN = MAX( 1, M - Q )
  442:          IORBDB = ITAUQ2 + MAX( 1, M - Q )
  443:          CALL DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  444:      $                X21, LDX21, X22, LDX22, 0, 0, 0, 0, 0, 0, WORK,
  445:      $                -1, CHILDINFO )
  446:          LORBDBWORKOPT = INT( WORK(1) )
  447:          LORBDBWORKMIN = LORBDBWORKOPT
  448:          IB11D = ITAUQ2 + MAX( 1, M - Q )
  449:          IB11E = IB11D + MAX( 1, Q )
  450:          IB12D = IB11E + MAX( 1, Q - 1 )
  451:          IB12E = IB12D + MAX( 1, Q )
  452:          IB21D = IB12E + MAX( 1, Q - 1 )
  453:          IB21E = IB21D + MAX( 1, Q )
  454:          IB22D = IB21E + MAX( 1, Q - 1 )
  455:          IB22E = IB22D + MAX( 1, Q )
  456:          IBBCSD = IB22E + MAX( 1, Q - 1 )
  457:          CALL DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, 0,
  458:      $                0, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, 0,
  459:      $                0, 0, 0, 0, 0, 0, 0, WORK, -1, CHILDINFO )
  460:          LBBCSDWORKOPT = INT( WORK(1) )
  461:          LBBCSDWORKMIN = LBBCSDWORKOPT
  462:          LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
  463:      $              IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKOPT ) - 1
  464:          LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
  465:      $              IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKMIN ) - 1
  466:          WORK(1) = MAX(LWORKOPT,LWORKMIN)
  467: *
  468:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  469:             INFO = -22
  470:          ELSE
  471:             LORGQRWORK = LWORK - IORGQR + 1
  472:             LORGLQWORK = LWORK - IORGLQ + 1
  473:             LORBDBWORK = LWORK - IORBDB + 1
  474:             LBBCSDWORK = LWORK - IBBCSD + 1
  475:          END IF
  476:       END IF
  477: *
  478: *     Abort if any illegal arguments
  479: *
  480:       IF( INFO .NE. 0 ) THEN
  481:          CALL XERBLA( 'DORCSD', -INFO )
  482:          RETURN
  483:       ELSE IF( LQUERY ) THEN
  484:          RETURN
  485:       END IF
  486: *
  487: *     Transform to bidiagonal block form
  488: *
  489:       CALL DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
  490:      $             LDX21, X22, LDX22, THETA, WORK(IPHI), WORK(ITAUP1),
  491:      $             WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
  492:      $             WORK(IORBDB), LORBDBWORK, CHILDINFO )
  493: *
  494: *     Accumulate Householder reflectors
  495: *
  496:       IF( COLMAJOR ) THEN
  497:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  498:             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  499:             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  500:      $                   LORGQRWORK, INFO)
  501:          END IF
  502:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  503:             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  504:             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  505:      $                   WORK(IORGQR), LORGQRWORK, INFO )
  506:          END IF
  507:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  508:             CALL DLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
  509:      $                   LDV1T )
  510:             V1T(1, 1) = ONE
  511:             DO J = 2, Q
  512:                V1T(1,J) = ZERO
  513:                V1T(J,1) = ZERO
  514:             END DO
  515:             CALL DORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  516:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
  517:          END IF
  518:          IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
  519:             CALL DLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
  520:             CALL DLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
  521:      $                   V2T(P+1,P+1), LDV2T )
  522:             CALL DORGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
  523:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
  524:          END IF
  525:       ELSE
  526:          IF( WANTU1 .AND. P .GT. 0 ) THEN
  527:             CALL DLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
  528:             CALL DORGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
  529:      $                   LORGLQWORK, INFO)
  530:          END IF
  531:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  532:             CALL DLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
  533:             CALL DORGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  534:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
  535:          END IF
  536:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
  537:             CALL DLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
  538:      $                   LDV1T )
  539:             V1T(1, 1) = ONE
  540:             DO J = 2, Q
  541:                V1T(1,J) = ZERO
  542:                V1T(J,1) = ZERO
  543:             END DO
  544:             CALL DORGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  545:      $                   WORK(IORGQR), LORGQRWORK, INFO )
  546:          END IF
  547:          IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
  548:             CALL DLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
  549:             CALL DLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22,
  550:      $                   V2T(P+1,P+1), LDV2T )
  551:             CALL DORGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
  552:      $                   WORK(IORGQR), LORGQRWORK, INFO )
  553:          END IF
  554:       END IF
  555: *
  556: *     Compute the CSD of the matrix in bidiagonal-block form
  557: *
  558:       CALL DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
  559:      $             WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
  560:      $             LDV2T, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  561:      $             WORK(IB12E), WORK(IB21D), WORK(IB21E), WORK(IB22D),
  562:      $             WORK(IB22E), WORK(IBBCSD), LBBCSDWORK, INFO )
  563: *
  564: *     Permute rows and columns to place identity submatrices in top-
  565: *     left corner of (1,1)-block and/or bottom-right corner of (1,2)-
  566: *     block and/or bottom-right corner of (2,1)-block and/or top-left
  567: *     corner of (2,2)-block 
  568: *
  569:       IF( Q .GT. 0 .AND. WANTU2 ) THEN
  570:          DO I = 1, Q
  571:             IWORK(I) = M - P - Q + I
  572:          END DO
  573:          DO I = Q + 1, M - P
  574:             IWORK(I) = I - Q
  575:          END DO
  576:          IF( COLMAJOR ) THEN
  577:             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  578:          ELSE
  579:             CALL DLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  580:          END IF
  581:       END IF
  582:       IF( M .GT. 0 .AND. WANTV2T ) THEN
  583:          DO I = 1, P
  584:             IWORK(I) = M - P - Q + I
  585:          END DO
  586:          DO I = P + 1, M - Q
  587:             IWORK(I) = I - P
  588:          END DO
  589:          IF( .NOT. COLMAJOR ) THEN
  590:             CALL DLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
  591:          ELSE
  592:             CALL DLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
  593:          END IF
  594:       END IF
  595: *
  596:       RETURN
  597: *
  598: *     End DORCSD
  599: *
  600:       END
  601: 

CVSweb interface <joel.bertrand@systella.fr>