Annotation of rpl/lapack/lapack/dorcsd.f, revision 1.16

1.4       bertrand    1: *> \brief \b DORCSD
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.12      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.4       bertrand    7: *
                      8: *> \htmlonly
1.12      bertrand    9: *> Download DORCSD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorcsd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorcsd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorcsd.f">
1.4       bertrand   15: *> [TXT]</a>
1.12      bertrand   16: *> \endhtmlonly
1.4       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       RECURSIVE SUBROUTINE DORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
                     22: *                                    SIGNS, M, P, Q, X11, LDX11, X12,
                     23: *                                    LDX12, X21, LDX21, X22, LDX22, THETA,
                     24: *                                    U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
                     25: *                                    LDV2T, WORK, LWORK, IWORK, INFO )
1.12      bertrand   26: *
1.4       bertrand   27: *       .. Scalar Arguments ..
                     28: *       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
                     29: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
                     30: *      $                   LDX21, LDX22, LWORK, M, P, Q
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   THETA( * )
                     35: *       DOUBLE PRECISION   U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
                     36: *      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
                     37: *      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
                     38: *      $                   * )
                     39: *       ..
1.12      bertrand   40: *
1.4       bertrand   41: *
                     42: *> \par Purpose:
                     43: *  =============
                     44: *>
                     45: *> \verbatim
                     46: *>
                     47: *> DORCSD computes the CS decomposition of an M-by-M partitioned
                     48: *> orthogonal matrix X:
                     49: *>
                     50: *>                                 [  I  0  0 |  0  0  0 ]
                     51: *>                                 [  0  C  0 |  0 -S  0 ]
                     52: *>     [ X11 | X12 ]   [ U1 |    ] [  0  0  0 |  0  0 -I ] [ V1 |    ]**T
                     53: *> X = [-----------] = [---------] [---------------------] [---------]   .
                     54: *>     [ X21 | X22 ]   [    | U2 ] [  0  0  0 |  I  0  0 ] [    | V2 ]
                     55: *>                                 [  0  S  0 |  0  C  0 ]
                     56: *>                                 [  0  0  I |  0  0  0 ]
                     57: *>
                     58: *> X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P,
                     59: *> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
                     60: *> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
                     61: *> which R = MIN(P,M-P,Q,M-Q).
                     62: *> \endverbatim
                     63: *
                     64: *  Arguments:
                     65: *  ==========
                     66: *
                     67: *> \param[in] JOBU1
                     68: *> \verbatim
                     69: *>          JOBU1 is CHARACTER
                     70: *>          = 'Y':      U1 is computed;
                     71: *>          otherwise:  U1 is not computed.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] JOBU2
                     75: *> \verbatim
                     76: *>          JOBU2 is CHARACTER
                     77: *>          = 'Y':      U2 is computed;
                     78: *>          otherwise:  U2 is not computed.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] JOBV1T
                     82: *> \verbatim
                     83: *>          JOBV1T is CHARACTER
                     84: *>          = 'Y':      V1T is computed;
                     85: *>          otherwise:  V1T is not computed.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in] JOBV2T
                     89: *> \verbatim
                     90: *>          JOBV2T is CHARACTER
                     91: *>          = 'Y':      V2T is computed;
                     92: *>          otherwise:  V2T is not computed.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] TRANS
                     96: *> \verbatim
                     97: *>          TRANS is CHARACTER
                     98: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
                     99: *>                      order;
                    100: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
                    101: *>                      major order.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] SIGNS
                    105: *> \verbatim
                    106: *>          SIGNS is CHARACTER
                    107: *>          = 'O':      The lower-left block is made nonpositive (the
                    108: *>                      "other" convention);
                    109: *>          otherwise:  The upper-right block is made nonpositive (the
                    110: *>                      "default" convention).
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] M
                    114: *> \verbatim
                    115: *>          M is INTEGER
                    116: *>          The number of rows and columns in X.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] P
                    120: *> \verbatim
                    121: *>          P is INTEGER
                    122: *>          The number of rows in X11 and X12. 0 <= P <= M.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] Q
                    126: *> \verbatim
                    127: *>          Q is INTEGER
                    128: *>          The number of columns in X11 and X21. 0 <= Q <= M.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in,out] X11
                    132: *> \verbatim
                    133: *>          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
                    134: *>          On entry, part of the orthogonal matrix whose CSD is desired.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] LDX11
                    138: *> \verbatim
                    139: *>          LDX11 is INTEGER
                    140: *>          The leading dimension of X11. LDX11 >= MAX(1,P).
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[in,out] X12
                    144: *> \verbatim
                    145: *>          X12 is DOUBLE PRECISION array, dimension (LDX12,M-Q)
                    146: *>          On entry, part of the orthogonal matrix whose CSD is desired.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[in] LDX12
                    150: *> \verbatim
                    151: *>          LDX12 is INTEGER
                    152: *>          The leading dimension of X12. LDX12 >= MAX(1,P).
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[in,out] X21
                    156: *> \verbatim
                    157: *>          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
                    158: *>          On entry, part of the orthogonal matrix whose CSD is desired.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[in] LDX21
                    162: *> \verbatim
                    163: *>          LDX21 is INTEGER
                    164: *>          The leading dimension of X11. LDX21 >= MAX(1,M-P).
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[in,out] X22
                    168: *> \verbatim
                    169: *>          X22 is DOUBLE PRECISION array, dimension (LDX22,M-Q)
                    170: *>          On entry, part of the orthogonal matrix whose CSD is desired.
                    171: *> \endverbatim
                    172: *>
                    173: *> \param[in] LDX22
                    174: *> \verbatim
                    175: *>          LDX22 is INTEGER
                    176: *>          The leading dimension of X11. LDX22 >= MAX(1,M-P).
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[out] THETA
                    180: *> \verbatim
                    181: *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
                    182: *>          MIN(P,M-P,Q,M-Q).
                    183: *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
                    184: *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
                    185: *> \endverbatim
                    186: *>
                    187: *> \param[out] U1
                    188: *> \verbatim
1.14      bertrand  189: *>          U1 is DOUBLE PRECISION array, dimension (LDU1,P)
1.4       bertrand  190: *>          If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
                    191: *> \endverbatim
                    192: *>
                    193: *> \param[in] LDU1
                    194: *> \verbatim
                    195: *>          LDU1 is INTEGER
                    196: *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
                    197: *>          MAX(1,P).
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[out] U2
                    201: *> \verbatim
1.14      bertrand  202: *>          U2 is DOUBLE PRECISION array, dimension (LDU2,M-P)
1.4       bertrand  203: *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
                    204: *>          matrix U2.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[in] LDU2
                    208: *> \verbatim
                    209: *>          LDU2 is INTEGER
                    210: *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
                    211: *>          MAX(1,M-P).
                    212: *> \endverbatim
                    213: *>
                    214: *> \param[out] V1T
                    215: *> \verbatim
1.14      bertrand  216: *>          V1T is DOUBLE PRECISION array, dimension (LDV1T,Q)
1.4       bertrand  217: *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
                    218: *>          matrix V1**T.
                    219: *> \endverbatim
                    220: *>
                    221: *> \param[in] LDV1T
                    222: *> \verbatim
                    223: *>          LDV1T is INTEGER
                    224: *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
                    225: *>          MAX(1,Q).
                    226: *> \endverbatim
                    227: *>
                    228: *> \param[out] V2T
                    229: *> \verbatim
1.14      bertrand  230: *>          V2T is DOUBLE PRECISION array, dimension (LDV2T,M-Q)
1.4       bertrand  231: *>          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal
                    232: *>          matrix V2**T.
                    233: *> \endverbatim
                    234: *>
                    235: *> \param[in] LDV2T
                    236: *> \verbatim
                    237: *>          LDV2T is INTEGER
                    238: *>          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
                    239: *>          MAX(1,M-Q).
                    240: *> \endverbatim
                    241: *>
                    242: *> \param[out] WORK
                    243: *> \verbatim
                    244: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    245: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    246: *>          If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
                    247: *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
                    248: *>          define the matrix in intermediate bidiagonal-block form
                    249: *>          remaining after nonconvergence. INFO specifies the number
                    250: *>          of nonzero PHI's.
                    251: *> \endverbatim
                    252: *>
                    253: *> \param[in] LWORK
                    254: *> \verbatim
                    255: *>          LWORK is INTEGER
                    256: *>          The dimension of the array WORK.
                    257: *>
                    258: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    259: *>          only calculates the optimal size of the WORK array, returns
                    260: *>          this value as the first entry of the work array, and no error
                    261: *>          message related to LWORK is issued by XERBLA.
                    262: *> \endverbatim
                    263: *>
                    264: *> \param[out] IWORK
                    265: *> \verbatim
                    266: *>          IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q))
                    267: *> \endverbatim
                    268: *>
                    269: *> \param[out] INFO
                    270: *> \verbatim
                    271: *>          INFO is INTEGER
                    272: *>          = 0:  successful exit.
                    273: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    274: *>          > 0:  DBBCSD did not converge. See the description of WORK
                    275: *>                above for details.
                    276: *> \endverbatim
                    277: *
                    278: *> \par References:
                    279: *  ================
                    280: *>
                    281: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
                    282: *>      Algorithms, 50(1):33-65, 2009.
                    283: *
                    284: *  Authors:
                    285: *  ========
                    286: *
1.12      bertrand  287: *> \author Univ. of Tennessee
                    288: *> \author Univ. of California Berkeley
                    289: *> \author Univ. of Colorado Denver
                    290: *> \author NAG Ltd.
1.4       bertrand  291: *
                    292: *> \ingroup doubleOTHERcomputational
                    293: *
                    294: *  =====================================================================
1.1       bertrand  295:       RECURSIVE SUBROUTINE DORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
                    296:      $                             SIGNS, M, P, Q, X11, LDX11, X12,
                    297:      $                             LDX12, X21, LDX21, X22, LDX22, THETA,
                    298:      $                             U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
                    299:      $                             LDV2T, WORK, LWORK, IWORK, INFO )
                    300: *
1.16    ! bertrand  301: *  -- LAPACK computational routine --
1.1       bertrand  302: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
1.4       bertrand  303: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.3       bertrand  304: *
1.1       bertrand  305: *     .. Scalar Arguments ..
                    306:       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
                    307:       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
                    308:      $                   LDX21, LDX22, LWORK, M, P, Q
                    309: *     ..
                    310: *     .. Array Arguments ..
                    311:       INTEGER            IWORK( * )
                    312:       DOUBLE PRECISION   THETA( * )
                    313:       DOUBLE PRECISION   U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
                    314:      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
                    315:      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
                    316:      $                   * )
                    317: *     ..
                    318: *
                    319: *  ===================================================================
                    320: *
                    321: *     .. Parameters ..
1.6       bertrand  322:       DOUBLE PRECISION   ONE, ZERO
                    323:       PARAMETER          ( ONE = 1.0D0,
1.1       bertrand  324:      $                     ZERO = 0.0D0 )
                    325: *     ..
                    326: *     .. Local Scalars ..
                    327:       CHARACTER          TRANST, SIGNST
                    328:       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
                    329:      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
                    330:      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
                    331:      $                   ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
                    332:      $                   LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
                    333:      $                   LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
                    334:      $                   LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
                    335:      $                   LORGQRWORKOPT, LWORKMIN, LWORKOPT
                    336:       LOGICAL            COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
                    337:      $                   WANTV1T, WANTV2T
                    338: *     ..
                    339: *     .. External Subroutines ..
1.12      bertrand  340:       EXTERNAL           DBBCSD, DLACPY, DLAPMR, DLAPMT,
1.1       bertrand  341:      $                   DORBDB, DORGLQ, DORGQR, XERBLA
                    342: *     ..
                    343: *     .. External Functions ..
                    344:       LOGICAL            LSAME
                    345:       EXTERNAL           LSAME
                    346: *     ..
                    347: *     .. Intrinsic Functions
1.4       bertrand  348:       INTRINSIC          INT, MAX, MIN
1.1       bertrand  349: *     ..
                    350: *     .. Executable Statements ..
                    351: *
                    352: *     Test input arguments
                    353: *
                    354:       INFO = 0
                    355:       WANTU1 = LSAME( JOBU1, 'Y' )
                    356:       WANTU2 = LSAME( JOBU2, 'Y' )
                    357:       WANTV1T = LSAME( JOBV1T, 'Y' )
                    358:       WANTV2T = LSAME( JOBV2T, 'Y' )
                    359:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
                    360:       DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
                    361:       LQUERY = LWORK .EQ. -1
                    362:       IF( M .LT. 0 ) THEN
                    363:          INFO = -7
                    364:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
                    365:          INFO = -8
                    366:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
                    367:          INFO = -9
1.9       bertrand  368:       ELSE IF ( COLMAJOR .AND.  LDX11 .LT. MAX( 1, P ) ) THEN
                    369:         INFO = -11
                    370:       ELSE IF (.NOT. COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
                    371:         INFO = -11
                    372:       ELSE IF (COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
                    373:         INFO = -13
                    374:       ELSE IF (.NOT. COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
                    375:         INFO = -13
                    376:       ELSE IF (COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
                    377:         INFO = -15
                    378:       ELSE IF (.NOT. COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
                    379:         INFO = -15
                    380:       ELSE IF (COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
                    381:         INFO = -17
                    382:       ELSE IF (.NOT. COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
                    383:         INFO = -17
1.1       bertrand  384:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
1.4       bertrand  385:          INFO = -20
1.1       bertrand  386:       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
1.4       bertrand  387:          INFO = -22
1.1       bertrand  388:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
1.4       bertrand  389:          INFO = -24
1.1       bertrand  390:       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
1.4       bertrand  391:          INFO = -26
1.1       bertrand  392:       END IF
                    393: *
                    394: *     Work with transpose if convenient
                    395: *
                    396:       IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
                    397:          IF( COLMAJOR ) THEN
                    398:             TRANST = 'T'
                    399:          ELSE
                    400:             TRANST = 'N'
                    401:          END IF
                    402:          IF( DEFAULTSIGNS ) THEN
                    403:             SIGNST = 'O'
                    404:          ELSE
                    405:             SIGNST = 'D'
                    406:          END IF
                    407:          CALL DORCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
                    408:      $                Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
                    409:      $                LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
                    410:      $                U2, LDU2, WORK, LWORK, IWORK, INFO )
                    411:          RETURN
                    412:       END IF
                    413: *
                    414: *     Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
                    415: *     convenient
                    416: *
                    417:       IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
                    418:          IF( DEFAULTSIGNS ) THEN
                    419:             SIGNST = 'O'
                    420:          ELSE
                    421:             SIGNST = 'D'
                    422:          END IF
                    423:          CALL DORCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
                    424:      $                M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
                    425:      $                LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
                    426:      $                LDV1T, WORK, LWORK, IWORK, INFO )
                    427:          RETURN
                    428:       END IF
                    429: *
                    430: *     Compute workspace
                    431: *
                    432:       IF( INFO .EQ. 0 ) THEN
                    433: *
                    434:          IPHI = 2
                    435:          ITAUP1 = IPHI + MAX( 1, Q - 1 )
                    436:          ITAUP2 = ITAUP1 + MAX( 1, P )
                    437:          ITAUQ1 = ITAUP2 + MAX( 1, M - P )
                    438:          ITAUQ2 = ITAUQ1 + MAX( 1, Q )
                    439:          IORGQR = ITAUQ2 + MAX( 1, M - Q )
1.9       bertrand  440:          CALL DORGQR( M-Q, M-Q, M-Q, U1, MAX(1,M-Q), U1, WORK, -1,
1.1       bertrand  441:      $                CHILDINFO )
                    442:          LORGQRWORKOPT = INT( WORK(1) )
                    443:          LORGQRWORKMIN = MAX( 1, M - Q )
                    444:          IORGLQ = ITAUQ2 + MAX( 1, M - Q )
1.9       bertrand  445:          CALL DORGLQ( M-Q, M-Q, M-Q, U1, MAX(1,M-Q), U1, WORK, -1,
1.1       bertrand  446:      $                CHILDINFO )
                    447:          LORGLQWORKOPT = INT( WORK(1) )
                    448:          LORGLQWORKMIN = MAX( 1, M - Q )
                    449:          IORBDB = ITAUQ2 + MAX( 1, M - Q )
                    450:          CALL DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
1.9       bertrand  451:      $                X21, LDX21, X22, LDX22, THETA, V1T, U1, U2, V1T,
                    452:      $                V2T, WORK, -1, CHILDINFO )
1.1       bertrand  453:          LORBDBWORKOPT = INT( WORK(1) )
                    454:          LORBDBWORKMIN = LORBDBWORKOPT
                    455:          IB11D = ITAUQ2 + MAX( 1, M - Q )
                    456:          IB11E = IB11D + MAX( 1, Q )
                    457:          IB12D = IB11E + MAX( 1, Q - 1 )
                    458:          IB12E = IB12D + MAX( 1, Q )
                    459:          IB21D = IB12E + MAX( 1, Q - 1 )
                    460:          IB21E = IB21D + MAX( 1, Q )
                    461:          IB22D = IB21E + MAX( 1, Q - 1 )
                    462:          IB22E = IB22D + MAX( 1, Q )
                    463:          IBBCSD = IB22E + MAX( 1, Q - 1 )
1.12      bertrand  464:          CALL DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
1.9       bertrand  465:      $                THETA, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
                    466:      $                LDV2T, U1, U1, U1, U1, U1, U1, U1, U1, WORK, -1,
                    467:      $                CHILDINFO )
1.1       bertrand  468:          LBBCSDWORKOPT = INT( WORK(1) )
                    469:          LBBCSDWORKMIN = LBBCSDWORKOPT
                    470:          LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
                    471:      $              IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKOPT ) - 1
                    472:          LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
                    473:      $              IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKMIN ) - 1
1.3       bertrand  474:          WORK(1) = MAX(LWORKOPT,LWORKMIN)
1.1       bertrand  475: *
                    476:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
                    477:             INFO = -22
                    478:          ELSE
                    479:             LORGQRWORK = LWORK - IORGQR + 1
                    480:             LORGLQWORK = LWORK - IORGLQ + 1
                    481:             LORBDBWORK = LWORK - IORBDB + 1
                    482:             LBBCSDWORK = LWORK - IBBCSD + 1
                    483:          END IF
                    484:       END IF
                    485: *
                    486: *     Abort if any illegal arguments
                    487: *
                    488:       IF( INFO .NE. 0 ) THEN
                    489:          CALL XERBLA( 'DORCSD', -INFO )
                    490:          RETURN
                    491:       ELSE IF( LQUERY ) THEN
                    492:          RETURN
                    493:       END IF
                    494: *
                    495: *     Transform to bidiagonal block form
                    496: *
                    497:       CALL DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
                    498:      $             LDX21, X22, LDX22, THETA, WORK(IPHI), WORK(ITAUP1),
                    499:      $             WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
                    500:      $             WORK(IORBDB), LORBDBWORK, CHILDINFO )
                    501: *
                    502: *     Accumulate Householder reflectors
                    503: *
                    504:       IF( COLMAJOR ) THEN
                    505:          IF( WANTU1 .AND. P .GT. 0 ) THEN
                    506:             CALL DLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
                    507:             CALL DORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
                    508:      $                   LORGQRWORK, INFO)
                    509:          END IF
                    510:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
                    511:             CALL DLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
                    512:             CALL DORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
                    513:      $                   WORK(IORGQR), LORGQRWORK, INFO )
                    514:          END IF
                    515:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
                    516:             CALL DLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
                    517:      $                   LDV1T )
                    518:             V1T(1, 1) = ONE
                    519:             DO J = 2, Q
                    520:                V1T(1,J) = ZERO
                    521:                V1T(J,1) = ZERO
                    522:             END DO
                    523:             CALL DORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
                    524:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
                    525:          END IF
                    526:          IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
                    527:             CALL DLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
1.9       bertrand  528:             IF (M-P .GT. Q) Then
                    529:                CALL DLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
                    530:      $                      V2T(P+1,P+1), LDV2T )
                    531:             END IF
                    532:             IF (M .GT. Q) THEN
                    533:                CALL DORGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
                    534:      $                      WORK(IORGLQ), LORGLQWORK, INFO )
                    535:             END IF
1.1       bertrand  536:          END IF
                    537:       ELSE
                    538:          IF( WANTU1 .AND. P .GT. 0 ) THEN
                    539:             CALL DLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
                    540:             CALL DORGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
                    541:      $                   LORGLQWORK, INFO)
                    542:          END IF
                    543:          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
                    544:             CALL DLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
                    545:             CALL DORGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
                    546:      $                   WORK(IORGLQ), LORGLQWORK, INFO )
                    547:          END IF
                    548:          IF( WANTV1T .AND. Q .GT. 0 ) THEN
                    549:             CALL DLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
                    550:      $                   LDV1T )
                    551:             V1T(1, 1) = ONE
                    552:             DO J = 2, Q
                    553:                V1T(1,J) = ZERO
                    554:                V1T(J,1) = ZERO
                    555:             END DO
                    556:             CALL DORGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
                    557:      $                   WORK(IORGQR), LORGQRWORK, INFO )
                    558:          END IF
                    559:          IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
                    560:             CALL DLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
                    561:             CALL DLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22,
                    562:      $                   V2T(P+1,P+1), LDV2T )
                    563:             CALL DORGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
                    564:      $                   WORK(IORGQR), LORGQRWORK, INFO )
                    565:          END IF
                    566:       END IF
                    567: *
                    568: *     Compute the CSD of the matrix in bidiagonal-block form
                    569: *
                    570:       CALL DBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
                    571:      $             WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
                    572:      $             LDV2T, WORK(IB11D), WORK(IB11E), WORK(IB12D),
                    573:      $             WORK(IB12E), WORK(IB21D), WORK(IB21E), WORK(IB22D),
                    574:      $             WORK(IB22E), WORK(IBBCSD), LBBCSDWORK, INFO )
                    575: *
                    576: *     Permute rows and columns to place identity submatrices in top-
                    577: *     left corner of (1,1)-block and/or bottom-right corner of (1,2)-
                    578: *     block and/or bottom-right corner of (2,1)-block and/or top-left
1.12      bertrand  579: *     corner of (2,2)-block
1.1       bertrand  580: *
                    581:       IF( Q .GT. 0 .AND. WANTU2 ) THEN
                    582:          DO I = 1, Q
                    583:             IWORK(I) = M - P - Q + I
                    584:          END DO
                    585:          DO I = Q + 1, M - P
                    586:             IWORK(I) = I - Q
                    587:          END DO
                    588:          IF( COLMAJOR ) THEN
                    589:             CALL DLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
                    590:          ELSE
                    591:             CALL DLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
                    592:          END IF
                    593:       END IF
                    594:       IF( M .GT. 0 .AND. WANTV2T ) THEN
                    595:          DO I = 1, P
                    596:             IWORK(I) = M - P - Q + I
                    597:          END DO
                    598:          DO I = P + 1, M - Q
                    599:             IWORK(I) = I - P
                    600:          END DO
                    601:          IF( .NOT. COLMAJOR ) THEN
                    602:             CALL DLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
                    603:          ELSE
                    604:             CALL DLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
                    605:          END IF
                    606:       END IF
                    607: *
                    608:       RETURN
                    609: *
                    610: *     End DORCSD
                    611: *
                    612:       END
                    613: 

CVSweb interface <joel.bertrand@systella.fr>