Annotation of rpl/lapack/lapack/dorbdb6.f, revision 1.5

1.1       bertrand    1: *> \brief \b DORBDB6
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.4       bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
                      9: *> Download DORBDB6 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb6.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb6.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb6.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
                     22: *                           LDQ2, WORK, LWORK, INFO )
1.4       bertrand   23: *
1.1       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
                     26: *      $                   N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
                     30: *       ..
1.4       bertrand   31: *
                     32: *
1.1       bertrand   33: *> \par Purpose:
                     34: *> =============
                     35: *>
                     36: *>\verbatim
                     37: *>
                     38: *> DORBDB6 orthogonalizes the column vector
                     39: *>      X = [ X1 ]
                     40: *>          [ X2 ]
                     41: *> with respect to the columns of
                     42: *>      Q = [ Q1 ] .
                     43: *>          [ Q2 ]
                     44: *> The columns of Q must be orthonormal.
                     45: *>
                     46: *> If the projection is zero according to Kahan's "twice is enough"
                     47: *> criterion, then the zero vector is returned.
                     48: *>
                     49: *>\endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] M1
                     55: *> \verbatim
                     56: *>          M1 is INTEGER
                     57: *>           The dimension of X1 and the number of rows in Q1. 0 <= M1.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] M2
                     61: *> \verbatim
                     62: *>          M2 is INTEGER
                     63: *>           The dimension of X2 and the number of rows in Q2. 0 <= M2.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] N
                     67: *> \verbatim
                     68: *>          N is INTEGER
                     69: *>           The number of columns in Q1 and Q2. 0 <= N.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in,out] X1
                     73: *> \verbatim
                     74: *>          X1 is DOUBLE PRECISION array, dimension (M1)
                     75: *>           On entry, the top part of the vector to be orthogonalized.
                     76: *>           On exit, the top part of the projected vector.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] INCX1
                     80: *> \verbatim
                     81: *>          INCX1 is INTEGER
                     82: *>           Increment for entries of X1.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in,out] X2
                     86: *> \verbatim
                     87: *>          X2 is DOUBLE PRECISION array, dimension (M2)
                     88: *>           On entry, the bottom part of the vector to be
                     89: *>           orthogonalized. On exit, the bottom part of the projected
                     90: *>           vector.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] INCX2
                     94: *> \verbatim
                     95: *>          INCX2 is INTEGER
                     96: *>           Increment for entries of X2.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] Q1
                    100: *> \verbatim
                    101: *>          Q1 is DOUBLE PRECISION array, dimension (LDQ1, N)
                    102: *>           The top part of the orthonormal basis matrix.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] LDQ1
                    106: *> \verbatim
                    107: *>          LDQ1 is INTEGER
                    108: *>           The leading dimension of Q1. LDQ1 >= M1.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in] Q2
                    112: *> \verbatim
                    113: *>          Q2 is DOUBLE PRECISION array, dimension (LDQ2, N)
                    114: *>           The bottom part of the orthonormal basis matrix.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDQ2
                    118: *> \verbatim
                    119: *>          LDQ2 is INTEGER
                    120: *>           The leading dimension of Q2. LDQ2 >= M2.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[out] WORK
                    124: *> \verbatim
                    125: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] LWORK
                    129: *> \verbatim
                    130: *>          LWORK is INTEGER
                    131: *>           The dimension of the array WORK. LWORK >= N.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[out] INFO
                    135: *> \verbatim
                    136: *>          INFO is INTEGER
                    137: *>           = 0:  successful exit.
                    138: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
                    139: *> \endverbatim
                    140: *
                    141: *  Authors:
                    142: *  ========
                    143: *
1.4       bertrand  144: *> \author Univ. of Tennessee
                    145: *> \author Univ. of California Berkeley
                    146: *> \author Univ. of Colorado Denver
                    147: *> \author NAG Ltd.
1.1       bertrand  148: *
                    149: *> \date July 2012
                    150: *
                    151: *> \ingroup doubleOTHERcomputational
                    152: *
                    153: *  =====================================================================
                    154:       SUBROUTINE DORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
                    155:      $                    LDQ2, WORK, LWORK, INFO )
                    156: *
1.4       bertrand  157: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  158: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    159: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    160: *     July 2012
                    161: *
                    162: *     .. Scalar Arguments ..
                    163:       INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
                    164:      $                   N
                    165: *     ..
                    166: *     .. Array Arguments ..
                    167:       DOUBLE PRECISION   Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
                    168: *     ..
                    169: *
                    170: *  =====================================================================
                    171: *
                    172: *     .. Parameters ..
                    173:       DOUBLE PRECISION   ALPHASQ, REALONE, REALZERO
                    174:       PARAMETER          ( ALPHASQ = 0.01D0, REALONE = 1.0D0,
                    175:      $                     REALZERO = 0.0D0 )
                    176:       DOUBLE PRECISION   NEGONE, ONE, ZERO
                    177:       PARAMETER          ( NEGONE = -1.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
                    178: *     ..
                    179: *     .. Local Scalars ..
                    180:       INTEGER            I
                    181:       DOUBLE PRECISION   NORMSQ1, NORMSQ2, SCL1, SCL2, SSQ1, SSQ2
                    182: *     ..
                    183: *     .. External Subroutines ..
                    184:       EXTERNAL           DGEMV, DLASSQ, XERBLA
                    185: *     ..
                    186: *     .. Intrinsic Function ..
                    187:       INTRINSIC          MAX
                    188: *     ..
                    189: *     .. Executable Statements ..
                    190: *
                    191: *     Test input arguments
                    192: *
                    193:       INFO = 0
                    194:       IF( M1 .LT. 0 ) THEN
                    195:          INFO = -1
                    196:       ELSE IF( M2 .LT. 0 ) THEN
                    197:          INFO = -2
                    198:       ELSE IF( N .LT. 0 ) THEN
                    199:          INFO = -3
                    200:       ELSE IF( INCX1 .LT. 1 ) THEN
                    201:          INFO = -5
                    202:       ELSE IF( INCX2 .LT. 1 ) THEN
                    203:          INFO = -7
                    204:       ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
                    205:          INFO = -9
                    206:       ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
                    207:          INFO = -11
                    208:       ELSE IF( LWORK .LT. N ) THEN
                    209:          INFO = -13
                    210:       END IF
                    211: *
                    212:       IF( INFO .NE. 0 ) THEN
                    213:          CALL XERBLA( 'DORBDB6', -INFO )
                    214:          RETURN
                    215:       END IF
                    216: *
                    217: *     First, project X onto the orthogonal complement of Q's column
                    218: *     space
                    219: *
                    220:       SCL1 = REALZERO
                    221:       SSQ1 = REALONE
                    222:       CALL DLASSQ( M1, X1, INCX1, SCL1, SSQ1 )
                    223:       SCL2 = REALZERO
                    224:       SSQ2 = REALONE
                    225:       CALL DLASSQ( M2, X2, INCX2, SCL2, SSQ2 )
                    226:       NORMSQ1 = SCL1**2*SSQ1 + SCL2**2*SSQ2
                    227: *
                    228:       IF( M1 .EQ. 0 ) THEN
                    229:          DO I = 1, N
                    230:             WORK(I) = ZERO
                    231:          END DO
                    232:       ELSE
                    233:          CALL DGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
                    234:      $               1 )
                    235:       END IF
                    236: *
                    237:       CALL DGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
                    238: *
                    239:       CALL DGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
                    240:      $            INCX1 )
                    241:       CALL DGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
                    242:      $            INCX2 )
                    243: *
                    244:       SCL1 = REALZERO
                    245:       SSQ1 = REALONE
                    246:       CALL DLASSQ( M1, X1, INCX1, SCL1, SSQ1 )
                    247:       SCL2 = REALZERO
                    248:       SSQ2 = REALONE
                    249:       CALL DLASSQ( M2, X2, INCX2, SCL2, SSQ2 )
                    250:       NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2
                    251: *
                    252: *     If projection is sufficiently large in norm, then stop.
                    253: *     If projection is zero, then stop.
                    254: *     Otherwise, project again.
                    255: *
                    256:       IF( NORMSQ2 .GE. ALPHASQ*NORMSQ1 ) THEN
                    257:          RETURN
                    258:       END IF
                    259: *
                    260:       IF( NORMSQ2 .EQ. ZERO ) THEN
                    261:          RETURN
                    262:       END IF
1.4       bertrand  263: *
1.1       bertrand  264:       NORMSQ1 = NORMSQ2
                    265: *
                    266:       DO I = 1, N
                    267:          WORK(I) = ZERO
                    268:       END DO
                    269: *
                    270:       IF( M1 .EQ. 0 ) THEN
                    271:          DO I = 1, N
                    272:             WORK(I) = ZERO
                    273:          END DO
                    274:       ELSE
                    275:          CALL DGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
                    276:      $               1 )
                    277:       END IF
                    278: *
                    279:       CALL DGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
                    280: *
                    281:       CALL DGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
                    282:      $            INCX1 )
                    283:       CALL DGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
                    284:      $            INCX2 )
                    285: *
                    286:       SCL1 = REALZERO
                    287:       SSQ1 = REALONE
                    288:       CALL DLASSQ( M1, X1, INCX1, SCL1, SSQ1 )
                    289:       SCL2 = REALZERO
                    290:       SSQ2 = REALONE
                    291:       CALL DLASSQ( M1, X1, INCX1, SCL1, SSQ1 )
                    292:       NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2
                    293: *
                    294: *     If second projection is sufficiently large in norm, then do
                    295: *     nothing more. Alternatively, if it shrunk significantly, then
                    296: *     truncate it to zero.
                    297: *
                    298:       IF( NORMSQ2 .LT. ALPHASQ*NORMSQ1 ) THEN
                    299:          DO I = 1, M1
                    300:             X1(I) = ZERO
                    301:          END DO
                    302:          DO I = 1, M2
                    303:             X2(I) = ZERO
                    304:          END DO
                    305:       END IF
                    306: *
                    307:       RETURN
1.4       bertrand  308: *
1.1       bertrand  309: *     End of DORBDB6
                    310: *
                    311:       END
                    312: 

CVSweb interface <joel.bertrand@systella.fr>