![]() ![]() | ![]() |
Mise à jour de lapack vers la version 3.5.0.
1: *> \brief \b DORBDB4 2: * 3: * =========== DOCUMENTATION =========== 4: * 5: * Online html documentation available at 6: * http://www.netlib.org/lapack/explore-html/ 7: * 8: *> \htmlonly 9: *> Download DORBDB4 + dependencies 10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb4.f"> 11: *> [TGZ]</a> 12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb4.f"> 13: *> [ZIP]</a> 14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb4.f"> 15: *> [TXT]</a> 16: *> \endhtmlonly 17: * 18: * Definition: 19: * =========== 20: * 21: * SUBROUTINE DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, 22: * TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, 23: * INFO ) 24: * 25: * .. Scalar Arguments .. 26: * INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21 27: * .. 28: * .. Array Arguments .. 29: * DOUBLE PRECISION PHI(*), THETA(*) 30: * DOUBLE PRECISION PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*), 31: * $ WORK(*), X11(LDX11,*), X21(LDX21,*) 32: * .. 33: * 34: * 35: *> \par Purpose: 36: *> ============= 37: *> 38: *>\verbatim 39: *> 40: *> DORBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny 41: *> matrix X with orthonomal columns: 42: *> 43: *> [ B11 ] 44: *> [ X11 ] [ P1 | ] [ 0 ] 45: *> [-----] = [---------] [-----] Q1**T . 46: *> [ X21 ] [ | P2 ] [ B21 ] 47: *> [ 0 ] 48: *> 49: *> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P, 50: *> M-P, or Q. Routines DORBDB1, DORBDB2, and DORBDB3 handle cases in 51: *> which M-Q is not the minimum dimension. 52: *> 53: *> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), 54: *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by 55: *> Householder vectors. 56: *> 57: *> B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented 58: *> implicitly by angles THETA, PHI. 59: *> 60: *>\endverbatim 61: * 62: * Arguments: 63: * ========== 64: * 65: *> \param[in] M 66: *> \verbatim 67: *> M is INTEGER 68: *> The number of rows X11 plus the number of rows in X21. 69: *> \endverbatim 70: *> 71: *> \param[in] P 72: *> \verbatim 73: *> P is INTEGER 74: *> The number of rows in X11. 0 <= P <= M. 75: *> \endverbatim 76: *> 77: *> \param[in] Q 78: *> \verbatim 79: *> Q is INTEGER 80: *> The number of columns in X11 and X21. 0 <= Q <= M and 81: *> M-Q <= min(P,M-P,Q). 82: *> \endverbatim 83: *> 84: *> \param[in,out] X11 85: *> \verbatim 86: *> X11 is DOUBLE PRECISION array, dimension (LDX11,Q) 87: *> On entry, the top block of the matrix X to be reduced. On 88: *> exit, the columns of tril(X11) specify reflectors for P1 and 89: *> the rows of triu(X11,1) specify reflectors for Q1. 90: *> \endverbatim 91: *> 92: *> \param[in] LDX11 93: *> \verbatim 94: *> LDX11 is INTEGER 95: *> The leading dimension of X11. LDX11 >= P. 96: *> \endverbatim 97: *> 98: *> \param[in,out] X21 99: *> \verbatim 100: *> X21 is DOUBLE PRECISION array, dimension (LDX21,Q) 101: *> On entry, the bottom block of the matrix X to be reduced. On 102: *> exit, the columns of tril(X21) specify reflectors for P2. 103: *> \endverbatim 104: *> 105: *> \param[in] LDX21 106: *> \verbatim 107: *> LDX21 is INTEGER 108: *> The leading dimension of X21. LDX21 >= M-P. 109: *> \endverbatim 110: *> 111: *> \param[out] THETA 112: *> \verbatim 113: *> THETA is DOUBLE PRECISION array, dimension (Q) 114: *> The entries of the bidiagonal blocks B11, B21 are defined by 115: *> THETA and PHI. See Further Details. 116: *> \endverbatim 117: *> 118: *> \param[out] PHI 119: *> \verbatim 120: *> PHI is DOUBLE PRECISION array, dimension (Q-1) 121: *> The entries of the bidiagonal blocks B11, B21 are defined by 122: *> THETA and PHI. See Further Details. 123: *> \endverbatim 124: *> 125: *> \param[out] TAUP1 126: *> \verbatim 127: *> TAUP1 is DOUBLE PRECISION array, dimension (P) 128: *> The scalar factors of the elementary reflectors that define 129: *> P1. 130: *> \endverbatim 131: *> 132: *> \param[out] TAUP2 133: *> \verbatim 134: *> TAUP2 is DOUBLE PRECISION array, dimension (M-P) 135: *> The scalar factors of the elementary reflectors that define 136: *> P2. 137: *> \endverbatim 138: *> 139: *> \param[out] TAUQ1 140: *> \verbatim 141: *> TAUQ1 is DOUBLE PRECISION array, dimension (Q) 142: *> The scalar factors of the elementary reflectors that define 143: *> Q1. 144: *> \endverbatim 145: *> 146: *> \param[out] PHANTOM 147: *> \verbatim 148: *> PHANTOM is DOUBLE PRECISION array, dimension (M) 149: *> The routine computes an M-by-1 column vector Y that is 150: *> orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and 151: *> PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and 152: *> Y(P+1:M), respectively. 153: *> \endverbatim 154: *> 155: *> \param[out] WORK 156: *> \verbatim 157: *> WORK is DOUBLE PRECISION array, dimension (LWORK) 158: *> \endverbatim 159: *> 160: *> \param[in] LWORK 161: *> \verbatim 162: *> LWORK is INTEGER 163: *> The dimension of the array WORK. LWORK >= M-Q. 164: *> 165: *> If LWORK = -1, then a workspace query is assumed; the routine 166: *> only calculates the optimal size of the WORK array, returns 167: *> this value as the first entry of the WORK array, and no error 168: *> message related to LWORK is issued by XERBLA. 169: *> \endverbatim 170: *> 171: *> \param[out] INFO 172: *> \verbatim 173: *> INFO is INTEGER 174: *> = 0: successful exit. 175: *> < 0: if INFO = -i, the i-th argument had an illegal value. 176: *> \endverbatim 177: * 178: * Authors: 179: * ======== 180: * 181: *> \author Univ. of Tennessee 182: *> \author Univ. of California Berkeley 183: *> \author Univ. of Colorado Denver 184: *> \author NAG Ltd. 185: * 186: *> \date July 2012 187: * 188: *> \ingroup doubleOTHERcomputational 189: * 190: *> \par Further Details: 191: * ===================== 192: *> 193: *> \verbatim 194: *> 195: *> The upper-bidiagonal blocks B11, B21 are represented implicitly by 196: *> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry 197: *> in each bidiagonal band is a product of a sine or cosine of a THETA 198: *> with a sine or cosine of a PHI. See [1] or DORCSD for details. 199: *> 200: *> P1, P2, and Q1 are represented as products of elementary reflectors. 201: *> See DORCSD2BY1 for details on generating P1, P2, and Q1 using DORGQR 202: *> and DORGLQ. 203: *> \endverbatim 204: * 205: *> \par References: 206: * ================ 207: *> 208: *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. 209: *> Algorithms, 50(1):33-65, 2009. 210: *> 211: * ===================================================================== 212: SUBROUTINE DORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, 213: $ TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, 214: $ INFO ) 215: * 216: * -- LAPACK computational routine (version 3.5.0) -- 217: * -- LAPACK is a software package provided by Univ. of Tennessee, -- 218: * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 219: * July 2012 220: * 221: * .. Scalar Arguments .. 222: INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21 223: * .. 224: * .. Array Arguments .. 225: DOUBLE PRECISION PHI(*), THETA(*) 226: DOUBLE PRECISION PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*), 227: $ WORK(*), X11(LDX11,*), X21(LDX21,*) 228: * .. 229: * 230: * ==================================================================== 231: * 232: * .. Parameters .. 233: DOUBLE PRECISION NEGONE, ONE, ZERO 234: PARAMETER ( NEGONE = -1.0D0, ONE = 1.0D0, ZERO = 0.0D0 ) 235: * .. 236: * .. Local Scalars .. 237: DOUBLE PRECISION C, S 238: INTEGER CHILDINFO, I, ILARF, IORBDB5, J, LLARF, 239: $ LORBDB5, LWORKMIN, LWORKOPT 240: LOGICAL LQUERY 241: * .. 242: * .. External Subroutines .. 243: EXTERNAL DLARF, DLARFGP, DORBDB5, DROT, DSCAL, XERBLA 244: * .. 245: * .. External Functions .. 246: DOUBLE PRECISION DNRM2 247: EXTERNAL DNRM2 248: * .. 249: * .. Intrinsic Function .. 250: INTRINSIC ATAN2, COS, MAX, SIN, SQRT 251: * .. 252: * .. Executable Statements .. 253: * 254: * Test input arguments 255: * 256: INFO = 0 257: LQUERY = LWORK .EQ. -1 258: * 259: IF( M .LT. 0 ) THEN 260: INFO = -1 261: ELSE IF( P .LT. M-Q .OR. M-P .LT. M-Q ) THEN 262: INFO = -2 263: ELSE IF( Q .LT. M-Q .OR. Q .GT. M ) THEN 264: INFO = -3 265: ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN 266: INFO = -5 267: ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN 268: INFO = -7 269: END IF 270: * 271: * Compute workspace 272: * 273: IF( INFO .EQ. 0 ) THEN 274: ILARF = 2 275: LLARF = MAX( Q-1, P-1, M-P-1 ) 276: IORBDB5 = 2 277: LORBDB5 = Q 278: LWORKOPT = ILARF + LLARF - 1 279: LWORKOPT = MAX( LWORKOPT, IORBDB5 + LORBDB5 - 1 ) 280: LWORKMIN = LWORKOPT 281: WORK(1) = LWORKOPT 282: IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN 283: INFO = -14 284: END IF 285: END IF 286: IF( INFO .NE. 0 ) THEN 287: CALL XERBLA( 'DORBDB4', -INFO ) 288: RETURN 289: ELSE IF( LQUERY ) THEN 290: RETURN 291: END IF 292: * 293: * Reduce columns 1, ..., M-Q of X11 and X21 294: * 295: DO I = 1, M-Q 296: * 297: IF( I .EQ. 1 ) THEN 298: DO J = 1, M 299: PHANTOM(J) = ZERO 300: END DO 301: CALL DORBDB5( P, M-P, Q, PHANTOM(1), 1, PHANTOM(P+1), 1, 302: $ X11, LDX11, X21, LDX21, WORK(IORBDB5), 303: $ LORBDB5, CHILDINFO ) 304: CALL DSCAL( P, NEGONE, PHANTOM(1), 1 ) 305: CALL DLARFGP( P, PHANTOM(1), PHANTOM(2), 1, TAUP1(1) ) 306: CALL DLARFGP( M-P, PHANTOM(P+1), PHANTOM(P+2), 1, TAUP2(1) ) 307: THETA(I) = ATAN2( PHANTOM(1), PHANTOM(P+1) ) 308: C = COS( THETA(I) ) 309: S = SIN( THETA(I) ) 310: PHANTOM(1) = ONE 311: PHANTOM(P+1) = ONE 312: CALL DLARF( 'L', P, Q, PHANTOM(1), 1, TAUP1(1), X11, LDX11, 313: $ WORK(ILARF) ) 314: CALL DLARF( 'L', M-P, Q, PHANTOM(P+1), 1, TAUP2(1), X21, 315: $ LDX21, WORK(ILARF) ) 316: ELSE 317: CALL DORBDB5( P-I+1, M-P-I+1, Q-I+1, X11(I,I-1), 1, 318: $ X21(I,I-1), 1, X11(I,I), LDX11, X21(I,I), 319: $ LDX21, WORK(IORBDB5), LORBDB5, CHILDINFO ) 320: CALL DSCAL( P-I+1, NEGONE, X11(I,I-1), 1 ) 321: CALL DLARFGP( P-I+1, X11(I,I-1), X11(I+1,I-1), 1, TAUP1(I) ) 322: CALL DLARFGP( M-P-I+1, X21(I,I-1), X21(I+1,I-1), 1, 323: $ TAUP2(I) ) 324: THETA(I) = ATAN2( X11(I,I-1), X21(I,I-1) ) 325: C = COS( THETA(I) ) 326: S = SIN( THETA(I) ) 327: X11(I,I-1) = ONE 328: X21(I,I-1) = ONE 329: CALL DLARF( 'L', P-I+1, Q-I+1, X11(I,I-1), 1, TAUP1(I), 330: $ X11(I,I), LDX11, WORK(ILARF) ) 331: CALL DLARF( 'L', M-P-I+1, Q-I+1, X21(I,I-1), 1, TAUP2(I), 332: $ X21(I,I), LDX21, WORK(ILARF) ) 333: END IF 334: * 335: CALL DROT( Q-I+1, X11(I,I), LDX11, X21(I,I), LDX21, S, -C ) 336: CALL DLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) ) 337: C = X21(I,I) 338: X21(I,I) = ONE 339: CALL DLARF( 'R', P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I), 340: $ X11(I+1,I), LDX11, WORK(ILARF) ) 341: CALL DLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I), 342: $ X21(I+1,I), LDX21, WORK(ILARF) ) 343: IF( I .LT. M-Q ) THEN 344: S = SQRT( DNRM2( P-I, X11(I+1,I), 1, X11(I+1,I), 345: $ 1 )**2 + DNRM2( M-P-I, X21(I+1,I), 1, X21(I+1,I), 346: $ 1 )**2 ) 347: PHI(I) = ATAN2( S, C ) 348: END IF 349: * 350: END DO 351: * 352: * Reduce the bottom-right portion of X11 to [ I 0 ] 353: * 354: DO I = M - Q + 1, P 355: CALL DLARFGP( Q-I+1, X11(I,I), X11(I,I+1), LDX11, TAUQ1(I) ) 356: X11(I,I) = ONE 357: CALL DLARF( 'R', P-I, Q-I+1, X11(I,I), LDX11, TAUQ1(I), 358: $ X11(I+1,I), LDX11, WORK(ILARF) ) 359: CALL DLARF( 'R', Q-P, Q-I+1, X11(I,I), LDX11, TAUQ1(I), 360: $ X21(M-Q+1,I), LDX21, WORK(ILARF) ) 361: END DO 362: * 363: * Reduce the bottom-right portion of X21 to [ 0 I ] 364: * 365: DO I = P + 1, Q 366: CALL DLARFGP( Q-I+1, X21(M-Q+I-P,I), X21(M-Q+I-P,I+1), LDX21, 367: $ TAUQ1(I) ) 368: X21(M-Q+I-P,I) = ONE 369: CALL DLARF( 'R', Q-I, Q-I+1, X21(M-Q+I-P,I), LDX21, TAUQ1(I), 370: $ X21(M-Q+I-P+1,I), LDX21, WORK(ILARF) ) 371: END DO 372: * 373: RETURN 374: * 375: * End of DORBDB4 376: * 377: END 378: