Annotation of rpl/lapack/lapack/dorbdb1.f, revision 1.5

1.1       bertrand    1: *> \brief \b DORBDB1
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.5     ! bertrand    5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
                      9: *> Download DORBDB1 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb1.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb1.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb1.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
                     22: *                           TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
1.5     ! bertrand   23: *
1.1       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   PHI(*), THETA(*)
                     29: *       DOUBLE PRECISION   TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
                     30: *      $                   X11(LDX11,*), X21(LDX21,*)
                     31: *       ..
1.5     ! bertrand   32: *
        !            33: *
1.1       bertrand   34: *> \par Purpose:
                     35: *> =============
                     36: *>
                     37: *>\verbatim
                     38: *>
                     39: *> DORBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
                     40: *> matrix X with orthonomal columns:
                     41: *>
                     42: *>                            [ B11 ]
                     43: *>      [ X11 ]   [ P1 |    ] [  0  ]
                     44: *>      [-----] = [---------] [-----] Q1**T .
                     45: *>      [ X21 ]   [    | P2 ] [ B21 ]
                     46: *>                            [  0  ]
                     47: *>
                     48: *> X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
                     49: *> M-P, or M-Q. Routines DORBDB2, DORBDB3, and DORBDB4 handle cases in
                     50: *> which Q is not the minimum dimension.
                     51: *>
                     52: *> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
                     53: *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
                     54: *> Householder vectors.
                     55: *>
                     56: *> B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
                     57: *> angles THETA, PHI.
                     58: *>
                     59: *>\endverbatim
                     60: *
                     61: *  Arguments:
                     62: *  ==========
                     63: *
                     64: *> \param[in] M
                     65: *> \verbatim
                     66: *>          M is INTEGER
                     67: *>           The number of rows X11 plus the number of rows in X21.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] P
                     71: *> \verbatim
                     72: *>          P is INTEGER
                     73: *>           The number of rows in X11. 0 <= P <= M.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] Q
                     77: *> \verbatim
                     78: *>          Q is INTEGER
                     79: *>           The number of columns in X11 and X21. 0 <= Q <=
                     80: *>           MIN(P,M-P,M-Q).
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in,out] X11
                     84: *> \verbatim
                     85: *>          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
                     86: *>           On entry, the top block of the matrix X to be reduced. On
                     87: *>           exit, the columns of tril(X11) specify reflectors for P1 and
                     88: *>           the rows of triu(X11,1) specify reflectors for Q1.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] LDX11
                     92: *> \verbatim
                     93: *>          LDX11 is INTEGER
                     94: *>           The leading dimension of X11. LDX11 >= P.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in,out] X21
                     98: *> \verbatim
                     99: *>          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
                    100: *>           On entry, the bottom block of the matrix X to be reduced. On
                    101: *>           exit, the columns of tril(X21) specify reflectors for P2.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] LDX21
                    105: *> \verbatim
                    106: *>          LDX21 is INTEGER
                    107: *>           The leading dimension of X21. LDX21 >= M-P.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[out] THETA
                    111: *> \verbatim
                    112: *>          THETA is DOUBLE PRECISION array, dimension (Q)
                    113: *>           The entries of the bidiagonal blocks B11, B21 are defined by
                    114: *>           THETA and PHI. See Further Details.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[out] PHI
                    118: *> \verbatim
                    119: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
                    120: *>           The entries of the bidiagonal blocks B11, B21 are defined by
                    121: *>           THETA and PHI. See Further Details.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] TAUP1
                    125: *> \verbatim
                    126: *>          TAUP1 is DOUBLE PRECISION array, dimension (P)
                    127: *>           The scalar factors of the elementary reflectors that define
                    128: *>           P1.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] TAUP2
                    132: *> \verbatim
                    133: *>          TAUP2 is DOUBLE PRECISION array, dimension (M-P)
                    134: *>           The scalar factors of the elementary reflectors that define
                    135: *>           P2.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] TAUQ1
                    139: *> \verbatim
                    140: *>          TAUQ1 is DOUBLE PRECISION array, dimension (Q)
                    141: *>           The scalar factors of the elementary reflectors that define
                    142: *>           Q1.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[out] WORK
                    146: *> \verbatim
                    147: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in] LWORK
                    151: *> \verbatim
                    152: *>          LWORK is INTEGER
                    153: *>           The dimension of the array WORK. LWORK >= M-Q.
1.5     ! bertrand  154: *>
1.1       bertrand  155: *>           If LWORK = -1, then a workspace query is assumed; the routine
                    156: *>           only calculates the optimal size of the WORK array, returns
                    157: *>           this value as the first entry of the WORK array, and no error
                    158: *>           message related to LWORK is issued by XERBLA.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[out] INFO
                    162: *> \verbatim
                    163: *>          INFO is INTEGER
                    164: *>           = 0:  successful exit.
                    165: *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
                    166: *> \endverbatim
                    167: *>
                    168: *
                    169: *  Authors:
                    170: *  ========
                    171: *
1.5     ! bertrand  172: *> \author Univ. of Tennessee
        !           173: *> \author Univ. of California Berkeley
        !           174: *> \author Univ. of Colorado Denver
        !           175: *> \author NAG Ltd.
1.1       bertrand  176: *
                    177: *> \date July 2012
                    178: *
                    179: *> \ingroup doubleOTHERcomputational
                    180: *
                    181: *> \par Further Details:
                    182: *  =====================
                    183: *>
                    184: *> \verbatim
                    185: *>
                    186: *>  The upper-bidiagonal blocks B11, B21 are represented implicitly by
                    187: *>  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
                    188: *>  in each bidiagonal band is a product of a sine or cosine of a THETA
                    189: *>  with a sine or cosine of a PHI. See [1] or DORCSD for details.
                    190: *>
                    191: *>  P1, P2, and Q1 are represented as products of elementary reflectors.
                    192: *>  See DORCSD2BY1 for details on generating P1, P2, and Q1 using DORGQR
                    193: *>  and DORGLQ.
                    194: *> \endverbatim
                    195: *
                    196: *> \par References:
                    197: *  ================
                    198: *>
                    199: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
                    200: *>      Algorithms, 50(1):33-65, 2009.
                    201: *>
                    202: *  =====================================================================
                    203:       SUBROUTINE DORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
                    204:      $                    TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
                    205: *
1.5     ! bertrand  206: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  207: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    208: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    209: *     July 2012
                    210: *
                    211: *     .. Scalar Arguments ..
                    212:       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
                    213: *     ..
                    214: *     .. Array Arguments ..
                    215:       DOUBLE PRECISION   PHI(*), THETA(*)
                    216:       DOUBLE PRECISION   TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
                    217:      $                   X11(LDX11,*), X21(LDX21,*)
                    218: *     ..
                    219: *
                    220: *  ====================================================================
                    221: *
                    222: *     .. Parameters ..
                    223:       DOUBLE PRECISION   ONE
                    224:       PARAMETER          ( ONE = 1.0D0 )
                    225: *     ..
                    226: *     .. Local Scalars ..
                    227:       DOUBLE PRECISION   C, S
                    228:       INTEGER            CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
                    229:      $                   LWORKMIN, LWORKOPT
                    230:       LOGICAL            LQUERY
                    231: *     ..
                    232: *     .. External Subroutines ..
                    233:       EXTERNAL           DLARF, DLARFGP, DORBDB5, DROT, XERBLA
                    234: *     ..
                    235: *     .. External Functions ..
                    236:       DOUBLE PRECISION   DNRM2
                    237:       EXTERNAL           DNRM2
                    238: *     ..
                    239: *     .. Intrinsic Function ..
                    240:       INTRINSIC          ATAN2, COS, MAX, SIN, SQRT
                    241: *     ..
                    242: *     .. Executable Statements ..
                    243: *
                    244: *     Test input arguments
                    245: *
                    246:       INFO = 0
                    247:       LQUERY = LWORK .EQ. -1
                    248: *
                    249:       IF( M .LT. 0 ) THEN
                    250:          INFO = -1
                    251:       ELSE IF( P .LT. Q .OR. M-P .LT. Q ) THEN
                    252:          INFO = -2
                    253:       ELSE IF( Q .LT. 0 .OR. M-Q .LT. Q ) THEN
                    254:          INFO = -3
                    255:       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
                    256:          INFO = -5
                    257:       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
                    258:          INFO = -7
                    259:       END IF
                    260: *
                    261: *     Compute workspace
                    262: *
                    263:       IF( INFO .EQ. 0 ) THEN
                    264:          ILARF = 2
                    265:          LLARF = MAX( P-1, M-P-1, Q-1 )
                    266:          IORBDB5 = 2
                    267:          LORBDB5 = Q-2
                    268:          LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
                    269:          LWORKMIN = LWORKOPT
                    270:          WORK(1) = LWORKOPT
                    271:          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
                    272:            INFO = -14
                    273:          END IF
                    274:       END IF
                    275:       IF( INFO .NE. 0 ) THEN
                    276:          CALL XERBLA( 'DORBDB1', -INFO )
                    277:          RETURN
                    278:       ELSE IF( LQUERY ) THEN
                    279:          RETURN
                    280:       END IF
                    281: *
                    282: *     Reduce columns 1, ..., Q of X11 and X21
                    283: *
                    284:       DO I = 1, Q
                    285: *
                    286:          CALL DLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
                    287:          CALL DLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
                    288:          THETA(I) = ATAN2( X21(I,I), X11(I,I) )
                    289:          C = COS( THETA(I) )
                    290:          S = SIN( THETA(I) )
                    291:          X11(I,I) = ONE
                    292:          X21(I,I) = ONE
                    293:          CALL DLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I), X11(I,I+1),
                    294:      $               LDX11, WORK(ILARF) )
                    295:          CALL DLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, TAUP2(I),
                    296:      $               X21(I,I+1), LDX21, WORK(ILARF) )
                    297: *
                    298:          IF( I .LT. Q ) THEN
                    299:             CALL DROT( Q-I, X11(I,I+1), LDX11, X21(I,I+1), LDX21, C, S )
                    300:             CALL DLARFGP( Q-I, X21(I,I+1), X21(I,I+2), LDX21, TAUQ1(I) )
                    301:             S = X21(I,I+1)
                    302:             X21(I,I+1) = ONE
                    303:             CALL DLARF( 'R', P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
                    304:      $                  X11(I+1,I+1), LDX11, WORK(ILARF) )
                    305:             CALL DLARF( 'R', M-P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
                    306:      $                  X21(I+1,I+1), LDX21, WORK(ILARF) )
1.3       bertrand  307:             C = SQRT( DNRM2( P-I, X11(I+1,I+1), 1 )**2
                    308:      $          + DNRM2( M-P-I, X21(I+1,I+1), 1 )**2 )
1.1       bertrand  309:             PHI(I) = ATAN2( S, C )
                    310:             CALL DORBDB5( P-I, M-P-I, Q-I-1, X11(I+1,I+1), 1,
                    311:      $                    X21(I+1,I+1), 1, X11(I+1,I+2), LDX11,
                    312:      $                    X21(I+1,I+2), LDX21, WORK(IORBDB5), LORBDB5,
                    313:      $                    CHILDINFO )
                    314:          END IF
                    315: *
                    316:       END DO
                    317: *
                    318:       RETURN
                    319: *
                    320: *     End of DORBDB1
                    321: *
                    322:       END
                    323: 

CVSweb interface <joel.bertrand@systella.fr>