File:  [local] / rpl / lapack / lapack / dorbdb.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:36 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b DORBDB
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DORBDB + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
   22: *                          X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
   23: *                          TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          SIGNS, TRANS
   27: *       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
   28: *      $                   Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   PHI( * ), THETA( * )
   32: *       DOUBLE PRECISION   TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
   33: *      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
   34: *      $                   X21( LDX21, * ), X22( LDX22, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> DORBDB simultaneously bidiagonalizes the blocks of an M-by-M
   44: *> partitioned orthogonal matrix X:
   45: *>
   46: *>                                 [ B11 | B12 0  0 ]
   47: *>     [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**T
   48: *> X = [-----------] = [---------] [----------------] [---------]   .
   49: *>     [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
   50: *>                                 [  0  |  0  0  I ]
   51: *>
   52: *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
   53: *> not the case, then X must be transposed and/or permuted. This can be
   54: *> done in constant time using the TRANS and SIGNS options. See DORCSD
   55: *> for details.)
   56: *>
   57: *> The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
   58: *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
   59: *> represented implicitly by Householder vectors.
   60: *>
   61: *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
   62: *> implicitly by angles THETA, PHI.
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] TRANS
   69: *> \verbatim
   70: *>          TRANS is CHARACTER
   71: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
   72: *>                      order;
   73: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
   74: *>                      major order.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] SIGNS
   78: *> \verbatim
   79: *>          SIGNS is CHARACTER
   80: *>          = 'O':      The lower-left block is made nonpositive (the
   81: *>                      "other" convention);
   82: *>          otherwise:  The upper-right block is made nonpositive (the
   83: *>                      "default" convention).
   84: *> \endverbatim
   85: *>
   86: *> \param[in] M
   87: *> \verbatim
   88: *>          M is INTEGER
   89: *>          The number of rows and columns in X.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] P
   93: *> \verbatim
   94: *>          P is INTEGER
   95: *>          The number of rows in X11 and X12. 0 <= P <= M.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] Q
   99: *> \verbatim
  100: *>          Q is INTEGER
  101: *>          The number of columns in X11 and X21. 0 <= Q <=
  102: *>          MIN(P,M-P,M-Q).
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] X11
  106: *> \verbatim
  107: *>          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
  108: *>          On entry, the top-left block of the orthogonal matrix to be
  109: *>          reduced. On exit, the form depends on TRANS:
  110: *>          If TRANS = 'N', then
  111: *>             the columns of tril(X11) specify reflectors for P1,
  112: *>             the rows of triu(X11,1) specify reflectors for Q1;
  113: *>          else TRANS = 'T', and
  114: *>             the rows of triu(X11) specify reflectors for P1,
  115: *>             the columns of tril(X11,-1) specify reflectors for Q1.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDX11
  119: *> \verbatim
  120: *>          LDX11 is INTEGER
  121: *>          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
  122: *>          P; else LDX11 >= Q.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] X12
  126: *> \verbatim
  127: *>          X12 is DOUBLE PRECISION array, dimension (LDX12,M-Q)
  128: *>          On entry, the top-right block of the orthogonal matrix to
  129: *>          be reduced. On exit, the form depends on TRANS:
  130: *>          If TRANS = 'N', then
  131: *>             the rows of triu(X12) specify the first P reflectors for
  132: *>             Q2;
  133: *>          else TRANS = 'T', and
  134: *>             the columns of tril(X12) specify the first P reflectors
  135: *>             for Q2.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] LDX12
  139: *> \verbatim
  140: *>          LDX12 is INTEGER
  141: *>          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
  142: *>          P; else LDX11 >= M-Q.
  143: *> \endverbatim
  144: *>
  145: *> \param[in,out] X21
  146: *> \verbatim
  147: *>          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
  148: *>          On entry, the bottom-left block of the orthogonal matrix to
  149: *>          be reduced. On exit, the form depends on TRANS:
  150: *>          If TRANS = 'N', then
  151: *>             the columns of tril(X21) specify reflectors for P2;
  152: *>          else TRANS = 'T', and
  153: *>             the rows of triu(X21) specify reflectors for P2.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDX21
  157: *> \verbatim
  158: *>          LDX21 is INTEGER
  159: *>          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
  160: *>          M-P; else LDX21 >= Q.
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] X22
  164: *> \verbatim
  165: *>          X22 is DOUBLE PRECISION array, dimension (LDX22,M-Q)
  166: *>          On entry, the bottom-right block of the orthogonal matrix to
  167: *>          be reduced. On exit, the form depends on TRANS:
  168: *>          If TRANS = 'N', then
  169: *>             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
  170: *>             M-P-Q reflectors for Q2,
  171: *>          else TRANS = 'T', and
  172: *>             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
  173: *>             M-P-Q reflectors for P2.
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDX22
  177: *> \verbatim
  178: *>          LDX22 is INTEGER
  179: *>          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
  180: *>          M-P; else LDX22 >= M-Q.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] THETA
  184: *> \verbatim
  185: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  186: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  187: *>          be computed from the angles THETA and PHI. See Further
  188: *>          Details.
  189: *> \endverbatim
  190: *>
  191: *> \param[out] PHI
  192: *> \verbatim
  193: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  194: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  195: *>          be computed from the angles THETA and PHI. See Further
  196: *>          Details.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] TAUP1
  200: *> \verbatim
  201: *>          TAUP1 is DOUBLE PRECISION array, dimension (P)
  202: *>          The scalar factors of the elementary reflectors that define
  203: *>          P1.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] TAUP2
  207: *> \verbatim
  208: *>          TAUP2 is DOUBLE PRECISION array, dimension (M-P)
  209: *>          The scalar factors of the elementary reflectors that define
  210: *>          P2.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] TAUQ1
  214: *> \verbatim
  215: *>          TAUQ1 is DOUBLE PRECISION array, dimension (Q)
  216: *>          The scalar factors of the elementary reflectors that define
  217: *>          Q1.
  218: *> \endverbatim
  219: *>
  220: *> \param[out] TAUQ2
  221: *> \verbatim
  222: *>          TAUQ2 is DOUBLE PRECISION array, dimension (M-Q)
  223: *>          The scalar factors of the elementary reflectors that define
  224: *>          Q2.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
  230: *> \endverbatim
  231: *>
  232: *> \param[in] LWORK
  233: *> \verbatim
  234: *>          LWORK is INTEGER
  235: *>          The dimension of the array WORK. LWORK >= M-Q.
  236: *>
  237: *>          If LWORK = -1, then a workspace query is assumed; the routine
  238: *>          only calculates the optimal size of the WORK array, returns
  239: *>          this value as the first entry of the WORK array, and no error
  240: *>          message related to LWORK is issued by XERBLA.
  241: *> \endverbatim
  242: *>
  243: *> \param[out] INFO
  244: *> \verbatim
  245: *>          INFO is INTEGER
  246: *>          = 0:  successful exit.
  247: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  248: *> \endverbatim
  249: *
  250: *  Authors:
  251: *  ========
  252: *
  253: *> \author Univ. of Tennessee 
  254: *> \author Univ. of California Berkeley 
  255: *> \author Univ. of Colorado Denver 
  256: *> \author NAG Ltd. 
  257: *
  258: *> \date November 2011
  259: *
  260: *> \ingroup doubleOTHERcomputational
  261: *
  262: *> \par Further Details:
  263: *  =====================
  264: *>
  265: *> \verbatim
  266: *>
  267: *>  The bidiagonal blocks B11, B12, B21, and B22 are represented
  268: *>  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  269: *>  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  270: *>  lower bidiagonal. Every entry in each bidiagonal band is a product
  271: *>  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  272: *>  [1] or DORCSD for details.
  273: *>
  274: *>  P1, P2, Q1, and Q2 are represented as products of elementary
  275: *>  reflectors. See DORCSD for details on generating P1, P2, Q1, and Q2
  276: *>  using DORGQR and DORGLQ.
  277: *> \endverbatim
  278: *
  279: *> \par References:
  280: *  ================
  281: *>
  282: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  283: *>      Algorithms, 50(1):33-65, 2009.
  284: *>
  285: *  =====================================================================
  286:       SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  287:      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
  288:      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
  289: *
  290: *  -- LAPACK computational routine (version 3.4.0) --
  291: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  292: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  293: *     November 2011
  294: *
  295: *     .. Scalar Arguments ..
  296:       CHARACTER          SIGNS, TRANS
  297:       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
  298:      $                   Q
  299: *     ..
  300: *     .. Array Arguments ..
  301:       DOUBLE PRECISION   PHI( * ), THETA( * )
  302:       DOUBLE PRECISION   TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
  303:      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
  304:      $                   X21( LDX21, * ), X22( LDX22, * )
  305: *     ..
  306: *
  307: *  ====================================================================
  308: *
  309: *     .. Parameters ..
  310:       DOUBLE PRECISION   REALONE
  311:       PARAMETER          ( REALONE = 1.0D0 )
  312:       DOUBLE PRECISION   ONE
  313:       PARAMETER          ( ONE = 1.0D0 )
  314: *     ..
  315: *     .. Local Scalars ..
  316:       LOGICAL            COLMAJOR, LQUERY
  317:       INTEGER            I, LWORKMIN, LWORKOPT
  318:       DOUBLE PRECISION   Z1, Z2, Z3, Z4
  319: *     ..
  320: *     .. External Subroutines ..
  321:       EXTERNAL           DAXPY, DLARF, DLARFGP, DSCAL, XERBLA
  322: *     ..
  323: *     .. External Functions ..
  324:       DOUBLE PRECISION   DNRM2
  325:       LOGICAL            LSAME
  326:       EXTERNAL           DNRM2, LSAME
  327: *     ..
  328: *     .. Intrinsic Functions
  329:       INTRINSIC          ATAN2, COS, MAX, SIN
  330: *     ..
  331: *     .. Executable Statements ..
  332: *
  333: *     Test input arguments
  334: *
  335:       INFO = 0
  336:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  337:       IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
  338:          Z1 = REALONE
  339:          Z2 = REALONE
  340:          Z3 = REALONE
  341:          Z4 = REALONE
  342:       ELSE
  343:          Z1 = REALONE
  344:          Z2 = -REALONE
  345:          Z3 = REALONE
  346:          Z4 = -REALONE
  347:       END IF
  348:       LQUERY = LWORK .EQ. -1
  349: *
  350:       IF( M .LT. 0 ) THEN
  351:          INFO = -3
  352:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  353:          INFO = -4
  354:       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
  355:      $         Q .GT. M-Q ) THEN
  356:          INFO = -5
  357:       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
  358:          INFO = -7
  359:       ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
  360:          INFO = -7
  361:       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
  362:          INFO = -9
  363:       ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
  364:          INFO = -9
  365:       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
  366:          INFO = -11
  367:       ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
  368:          INFO = -11
  369:       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
  370:          INFO = -13
  371:       ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
  372:          INFO = -13
  373:       END IF
  374: *
  375: *     Compute workspace
  376: *
  377:       IF( INFO .EQ. 0 ) THEN
  378:          LWORKOPT = M - Q
  379:          LWORKMIN = M - Q
  380:          WORK(1) = LWORKOPT
  381:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  382:             INFO = -21
  383:          END IF
  384:       END IF
  385:       IF( INFO .NE. 0 ) THEN
  386:          CALL XERBLA( 'xORBDB', -INFO )
  387:          RETURN
  388:       ELSE IF( LQUERY ) THEN
  389:          RETURN
  390:       END IF
  391: *
  392: *     Handle column-major and row-major separately
  393: *
  394:       IF( COLMAJOR ) THEN
  395: *
  396: *        Reduce columns 1, ..., Q of X11, X12, X21, and X22 
  397: *
  398:          DO I = 1, Q
  399: *
  400:             IF( I .EQ. 1 ) THEN
  401:                CALL DSCAL( P-I+1, Z1, X11(I,I), 1 )
  402:             ELSE
  403:                CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), 1 )
  404:                CALL DAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I,I-1),
  405:      $                     1, X11(I,I), 1 )
  406:             END IF
  407:             IF( I .EQ. 1 ) THEN
  408:                CALL DSCAL( M-P-I+1, Z2, X21(I,I), 1 )
  409:             ELSE
  410:                CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), 1 )
  411:                CALL DAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I,I-1),
  412:      $                     1, X21(I,I), 1 )
  413:             END IF
  414: *
  415:             THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), 1 ),
  416:      $                 DNRM2( P-I+1, X11(I,I), 1 ) )
  417: *
  418:             CALL DLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  419:             X11(I,I) = ONE
  420:             CALL DLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
  421:             X21(I,I) = ONE
  422: *
  423:             CALL DLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I),
  424:      $                  X11(I,I+1), LDX11, WORK )
  425:             CALL DLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1, TAUP1(I),
  426:      $                  X12(I,I), LDX12, WORK )
  427:             CALL DLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, TAUP2(I),
  428:      $                  X21(I,I+1), LDX21, WORK )
  429:             CALL DLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1, TAUP2(I),
  430:      $                  X22(I,I), LDX22, WORK )
  431: *
  432:             IF( I .LT. Q ) THEN
  433:                CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I,I+1),
  434:      $                     LDX11 )
  435:                CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I,I+1), LDX21,
  436:      $                     X11(I,I+1), LDX11 )
  437:             END IF
  438:             CALL DSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), LDX12 )
  439:             CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), LDX22,
  440:      $                  X12(I,I), LDX12 )
  441: *
  442:             IF( I .LT. Q )
  443:      $         PHI(I) = ATAN2( DNRM2( Q-I, X11(I,I+1), LDX11 ),
  444:      $                  DNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
  445: *
  446:             IF( I .LT. Q ) THEN
  447:                CALL DLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
  448:      $                       TAUQ1(I) )
  449:                X11(I,I+1) = ONE
  450:             END IF
  451:             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  452:      $                    TAUQ2(I) )
  453:             X12(I,I) = ONE
  454: *
  455:             IF( I .LT. Q ) THEN
  456:                CALL DLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  457:      $                     X11(I+1,I+1), LDX11, WORK )
  458:                CALL DLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  459:      $                     X21(I+1,I+1), LDX21, WORK )
  460:             END IF
  461:             CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  462:      $                  X12(I+1,I), LDX12, WORK )
  463:             CALL DLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  464:      $                  X22(I+1,I), LDX22, WORK )
  465: *
  466:          END DO
  467: *
  468: *        Reduce columns Q + 1, ..., P of X12, X22
  469: *
  470:          DO I = Q + 1, P
  471: *
  472:             CALL DSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), LDX12 )
  473:             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  474:      $                    TAUQ2(I) )
  475:             X12(I,I) = ONE
  476: *
  477:             CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  478:      $                  X12(I+1,I), LDX12, WORK )
  479:             IF( M-P-Q .GE. 1 )
  480:      $         CALL DLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
  481:      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
  482: *
  483:          END DO
  484: *
  485: *        Reduce columns P + 1, ..., M - Q of X12, X22
  486: *
  487:          DO I = 1, M - P - Q
  488: *
  489:             CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(Q+I,P+I), LDX22 )
  490:             CALL DLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
  491:      $                    LDX22, TAUQ2(P+I) )
  492:             X22(Q+I,P+I) = ONE
  493:             CALL DLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
  494:      $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
  495: *
  496:          END DO
  497: *
  498:       ELSE
  499: *
  500: *        Reduce columns 1, ..., Q of X11, X12, X21, X22
  501: *
  502:          DO I = 1, Q
  503: *
  504:             IF( I .EQ. 1 ) THEN
  505:                CALL DSCAL( P-I+1, Z1, X11(I,I), LDX11 )
  506:             ELSE
  507:                CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), LDX11 )
  508:                CALL DAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I-1,I),
  509:      $                     LDX12, X11(I,I), LDX11 )
  510:             END IF
  511:             IF( I .EQ. 1 ) THEN
  512:                CALL DSCAL( M-P-I+1, Z2, X21(I,I), LDX21 )
  513:             ELSE
  514:                CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), LDX21 )
  515:                CALL DAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I-1,I),
  516:      $                     LDX22, X21(I,I), LDX21 )
  517:             END IF
  518: *
  519:             THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), LDX21 ),
  520:      $                 DNRM2( P-I+1, X11(I,I), LDX11 ) )
  521: *
  522:             CALL DLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
  523:             X11(I,I) = ONE
  524:             CALL DLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
  525:      $                    TAUP2(I) )
  526:             X21(I,I) = ONE
  527: *
  528:             CALL DLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
  529:      $                  X11(I+1,I), LDX11, WORK )
  530:             CALL DLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
  531:      $                  X12(I,I), LDX12, WORK )
  532:             CALL DLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
  533:      $                  X21(I+1,I), LDX21, WORK )
  534:             CALL DLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
  535:      $                  TAUP2(I), X22(I,I), LDX22, WORK )
  536: *
  537:             IF( I .LT. Q ) THEN
  538:                CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I+1,I), 1 )
  539:                CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I+1,I), 1,
  540:      $                     X11(I+1,I), 1 )
  541:             END IF
  542:             CALL DSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), 1 )
  543:             CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), 1,
  544:      $                  X12(I,I), 1 )
  545: *
  546:             IF( I .LT. Q )
  547:      $         PHI(I) = ATAN2( DNRM2( Q-I, X11(I+1,I), 1 ),
  548:      $                  DNRM2( M-Q-I+1, X12(I,I), 1 ) )
  549: *
  550:             IF( I .LT. Q ) THEN
  551:                CALL DLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
  552:                X11(I+1,I) = ONE
  553:             END IF
  554:             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  555:             X12(I,I) = ONE
  556: *
  557:             IF( I .LT. Q ) THEN
  558:                CALL DLARF( 'L', Q-I, P-I, X11(I+1,I), 1, TAUQ1(I),
  559:      $                     X11(I+1,I+1), LDX11, WORK )
  560:                CALL DLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1, TAUQ1(I),
  561:      $                     X21(I+1,I+1), LDX21, WORK )
  562:             END IF
  563:             CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
  564:      $                  X12(I,I+1), LDX12, WORK )
  565:             CALL DLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1, TAUQ2(I),
  566:      $                  X22(I,I+1), LDX22, WORK )
  567: *
  568:          END DO
  569: *
  570: *        Reduce columns Q + 1, ..., P of X12, X22
  571: *
  572:          DO I = Q + 1, P
  573: *
  574:             CALL DSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), 1 )
  575:             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  576:             X12(I,I) = ONE
  577: *
  578:             CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
  579:      $                  X12(I,I+1), LDX12, WORK )
  580:             IF( M-P-Q .GE. 1 )
  581:      $         CALL DLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1, TAUQ2(I),
  582:      $                     X22(I,Q+1), LDX22, WORK )
  583: *
  584:          END DO
  585: *
  586: *        Reduce columns P + 1, ..., M - Q of X12, X22
  587: *
  588:          DO I = 1, M - P - Q
  589: *
  590:             CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(P+I,Q+I), 1 )
  591:             CALL DLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
  592:      $                    TAUQ2(P+I) )
  593:             X22(P+I,Q+I) = ONE
  594: *
  595:             CALL DLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
  596:      $                  TAUQ2(P+I), X22(P+I,Q+I+1), LDX22, WORK )
  597: *
  598:          END DO
  599: *
  600:       END IF
  601: *
  602:       RETURN
  603: *
  604: *     End of DORBDB
  605: *
  606:       END
  607: 

CVSweb interface <joel.bertrand@systella.fr>