File:  [local] / rpl / lapack / lapack / dorbdb.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:06:28 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief \b DORBDB
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DORBDB + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
   22: *                          X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
   23: *                          TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          SIGNS, TRANS
   27: *       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
   28: *      $                   Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   PHI( * ), THETA( * )
   32: *       DOUBLE PRECISION   TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
   33: *      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
   34: *      $                   X21( LDX21, * ), X22( LDX22, * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> DORBDB simultaneously bidiagonalizes the blocks of an M-by-M
   44: *> partitioned orthogonal matrix X:
   45: *>
   46: *>                                 [ B11 | B12 0  0 ]
   47: *>     [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**T
   48: *> X = [-----------] = [---------] [----------------] [---------]   .
   49: *>     [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
   50: *>                                 [  0  |  0  0  I ]
   51: *>
   52: *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
   53: *> not the case, then X must be transposed and/or permuted. This can be
   54: *> done in constant time using the TRANS and SIGNS options. See DORCSD
   55: *> for details.)
   56: *>
   57: *> The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
   58: *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
   59: *> represented implicitly by Householder vectors.
   60: *>
   61: *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
   62: *> implicitly by angles THETA, PHI.
   63: *> \endverbatim
   64: *
   65: *  Arguments:
   66: *  ==========
   67: *
   68: *> \param[in] TRANS
   69: *> \verbatim
   70: *>          TRANS is CHARACTER
   71: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
   72: *>                      order;
   73: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
   74: *>                      major order.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] SIGNS
   78: *> \verbatim
   79: *>          SIGNS is CHARACTER
   80: *>          = 'O':      The lower-left block is made nonpositive (the
   81: *>                      "other" convention);
   82: *>          otherwise:  The upper-right block is made nonpositive (the
   83: *>                      "default" convention).
   84: *> \endverbatim
   85: *>
   86: *> \param[in] M
   87: *> \verbatim
   88: *>          M is INTEGER
   89: *>          The number of rows and columns in X.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] P
   93: *> \verbatim
   94: *>          P is INTEGER
   95: *>          The number of rows in X11 and X12. 0 <= P <= M.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] Q
   99: *> \verbatim
  100: *>          Q is INTEGER
  101: *>          The number of columns in X11 and X21. 0 <= Q <=
  102: *>          MIN(P,M-P,M-Q).
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] X11
  106: *> \verbatim
  107: *>          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
  108: *>          On entry, the top-left block of the orthogonal matrix to be
  109: *>          reduced. On exit, the form depends on TRANS:
  110: *>          If TRANS = 'N', then
  111: *>             the columns of tril(X11) specify reflectors for P1,
  112: *>             the rows of triu(X11,1) specify reflectors for Q1;
  113: *>          else TRANS = 'T', and
  114: *>             the rows of triu(X11) specify reflectors for P1,
  115: *>             the columns of tril(X11,-1) specify reflectors for Q1.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDX11
  119: *> \verbatim
  120: *>          LDX11 is INTEGER
  121: *>          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
  122: *>          P; else LDX11 >= Q.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] X12
  126: *> \verbatim
  127: *>          X12 is DOUBLE PRECISION array, dimension (LDX12,M-Q)
  128: *>          On entry, the top-right block of the orthogonal matrix to
  129: *>          be reduced. On exit, the form depends on TRANS:
  130: *>          If TRANS = 'N', then
  131: *>             the rows of triu(X12) specify the first P reflectors for
  132: *>             Q2;
  133: *>          else TRANS = 'T', and
  134: *>             the columns of tril(X12) specify the first P reflectors
  135: *>             for Q2.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] LDX12
  139: *> \verbatim
  140: *>          LDX12 is INTEGER
  141: *>          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
  142: *>          P; else LDX11 >= M-Q.
  143: *> \endverbatim
  144: *>
  145: *> \param[in,out] X21
  146: *> \verbatim
  147: *>          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
  148: *>          On entry, the bottom-left block of the orthogonal matrix to
  149: *>          be reduced. On exit, the form depends on TRANS:
  150: *>          If TRANS = 'N', then
  151: *>             the columns of tril(X21) specify reflectors for P2;
  152: *>          else TRANS = 'T', and
  153: *>             the rows of triu(X21) specify reflectors for P2.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDX21
  157: *> \verbatim
  158: *>          LDX21 is INTEGER
  159: *>          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
  160: *>          M-P; else LDX21 >= Q.
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] X22
  164: *> \verbatim
  165: *>          X22 is DOUBLE PRECISION array, dimension (LDX22,M-Q)
  166: *>          On entry, the bottom-right block of the orthogonal matrix to
  167: *>          be reduced. On exit, the form depends on TRANS:
  168: *>          If TRANS = 'N', then
  169: *>             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
  170: *>             M-P-Q reflectors for Q2,
  171: *>          else TRANS = 'T', and
  172: *>             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
  173: *>             M-P-Q reflectors for P2.
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDX22
  177: *> \verbatim
  178: *>          LDX22 is INTEGER
  179: *>          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
  180: *>          M-P; else LDX22 >= M-Q.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] THETA
  184: *> \verbatim
  185: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  186: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  187: *>          be computed from the angles THETA and PHI. See Further
  188: *>          Details.
  189: *> \endverbatim
  190: *>
  191: *> \param[out] PHI
  192: *> \verbatim
  193: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  194: *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  195: *>          be computed from the angles THETA and PHI. See Further
  196: *>          Details.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] TAUP1
  200: *> \verbatim
  201: *>          TAUP1 is DOUBLE PRECISION array, dimension (P)
  202: *>          The scalar factors of the elementary reflectors that define
  203: *>          P1.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] TAUP2
  207: *> \verbatim
  208: *>          TAUP2 is DOUBLE PRECISION array, dimension (M-P)
  209: *>          The scalar factors of the elementary reflectors that define
  210: *>          P2.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] TAUQ1
  214: *> \verbatim
  215: *>          TAUQ1 is DOUBLE PRECISION array, dimension (Q)
  216: *>          The scalar factors of the elementary reflectors that define
  217: *>          Q1.
  218: *> \endverbatim
  219: *>
  220: *> \param[out] TAUQ2
  221: *> \verbatim
  222: *>          TAUQ2 is DOUBLE PRECISION array, dimension (M-Q)
  223: *>          The scalar factors of the elementary reflectors that define
  224: *>          Q2.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] WORK
  228: *> \verbatim
  229: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
  230: *> \endverbatim
  231: *>
  232: *> \param[in] LWORK
  233: *> \verbatim
  234: *>          LWORK is INTEGER
  235: *>          The dimension of the array WORK. LWORK >= M-Q.
  236: *>
  237: *>          If LWORK = -1, then a workspace query is assumed; the routine
  238: *>          only calculates the optimal size of the WORK array, returns
  239: *>          this value as the first entry of the WORK array, and no error
  240: *>          message related to LWORK is issued by XERBLA.
  241: *> \endverbatim
  242: *>
  243: *> \param[out] INFO
  244: *> \verbatim
  245: *>          INFO is INTEGER
  246: *>          = 0:  successful exit.
  247: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  248: *> \endverbatim
  249: *
  250: *  Authors:
  251: *  ========
  252: *
  253: *> \author Univ. of Tennessee
  254: *> \author Univ. of California Berkeley
  255: *> \author Univ. of Colorado Denver
  256: *> \author NAG Ltd.
  257: *
  258: *> \date December 2016
  259: *
  260: *> \ingroup doubleOTHERcomputational
  261: *
  262: *> \par Further Details:
  263: *  =====================
  264: *>
  265: *> \verbatim
  266: *>
  267: *>  The bidiagonal blocks B11, B12, B21, and B22 are represented
  268: *>  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  269: *>  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  270: *>  lower bidiagonal. Every entry in each bidiagonal band is a product
  271: *>  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  272: *>  [1] or DORCSD for details.
  273: *>
  274: *>  P1, P2, Q1, and Q2 are represented as products of elementary
  275: *>  reflectors. See DORCSD for details on generating P1, P2, Q1, and Q2
  276: *>  using DORGQR and DORGLQ.
  277: *> \endverbatim
  278: *
  279: *> \par References:
  280: *  ================
  281: *>
  282: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  283: *>      Algorithms, 50(1):33-65, 2009.
  284: *>
  285: *  =====================================================================
  286:       SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
  287:      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
  288:      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
  289: *
  290: *  -- LAPACK computational routine (version 3.7.0) --
  291: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  292: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  293: *     December 2016
  294: *
  295: *     .. Scalar Arguments ..
  296:       CHARACTER          SIGNS, TRANS
  297:       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
  298:      $                   Q
  299: *     ..
  300: *     .. Array Arguments ..
  301:       DOUBLE PRECISION   PHI( * ), THETA( * )
  302:       DOUBLE PRECISION   TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
  303:      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
  304:      $                   X21( LDX21, * ), X22( LDX22, * )
  305: *     ..
  306: *
  307: *  ====================================================================
  308: *
  309: *     .. Parameters ..
  310:       DOUBLE PRECISION   REALONE
  311:       PARAMETER          ( REALONE = 1.0D0 )
  312:       DOUBLE PRECISION   ONE
  313:       PARAMETER          ( ONE = 1.0D0 )
  314: *     ..
  315: *     .. Local Scalars ..
  316:       LOGICAL            COLMAJOR, LQUERY
  317:       INTEGER            I, LWORKMIN, LWORKOPT
  318:       DOUBLE PRECISION   Z1, Z2, Z3, Z4
  319: *     ..
  320: *     .. External Subroutines ..
  321:       EXTERNAL           DAXPY, DLARF, DLARFGP, DSCAL, XERBLA
  322: *     ..
  323: *     .. External Functions ..
  324:       DOUBLE PRECISION   DNRM2
  325:       LOGICAL            LSAME
  326:       EXTERNAL           DNRM2, LSAME
  327: *     ..
  328: *     .. Intrinsic Functions
  329:       INTRINSIC          ATAN2, COS, MAX, SIN
  330: *     ..
  331: *     .. Executable Statements ..
  332: *
  333: *     Test input arguments
  334: *
  335:       INFO = 0
  336:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  337:       IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
  338:          Z1 = REALONE
  339:          Z2 = REALONE
  340:          Z3 = REALONE
  341:          Z4 = REALONE
  342:       ELSE
  343:          Z1 = REALONE
  344:          Z2 = -REALONE
  345:          Z3 = REALONE
  346:          Z4 = -REALONE
  347:       END IF
  348:       LQUERY = LWORK .EQ. -1
  349: *
  350:       IF( M .LT. 0 ) THEN
  351:          INFO = -3
  352:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  353:          INFO = -4
  354:       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
  355:      $         Q .GT. M-Q ) THEN
  356:          INFO = -5
  357:       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
  358:          INFO = -7
  359:       ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
  360:          INFO = -7
  361:       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
  362:          INFO = -9
  363:       ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
  364:          INFO = -9
  365:       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
  366:          INFO = -11
  367:       ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
  368:          INFO = -11
  369:       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
  370:          INFO = -13
  371:       ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
  372:          INFO = -13
  373:       END IF
  374: *
  375: *     Compute workspace
  376: *
  377:       IF( INFO .EQ. 0 ) THEN
  378:          LWORKOPT = M - Q
  379:          LWORKMIN = M - Q
  380:          WORK(1) = LWORKOPT
  381:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  382:             INFO = -21
  383:          END IF
  384:       END IF
  385:       IF( INFO .NE. 0 ) THEN
  386:          CALL XERBLA( 'xORBDB', -INFO )
  387:          RETURN
  388:       ELSE IF( LQUERY ) THEN
  389:          RETURN
  390:       END IF
  391: *
  392: *     Handle column-major and row-major separately
  393: *
  394:       IF( COLMAJOR ) THEN
  395: *
  396: *        Reduce columns 1, ..., Q of X11, X12, X21, and X22
  397: *
  398:          DO I = 1, Q
  399: *
  400:             IF( I .EQ. 1 ) THEN
  401:                CALL DSCAL( P-I+1, Z1, X11(I,I), 1 )
  402:             ELSE
  403:                CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), 1 )
  404:                CALL DAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I,I-1),
  405:      $                     1, X11(I,I), 1 )
  406:             END IF
  407:             IF( I .EQ. 1 ) THEN
  408:                CALL DSCAL( M-P-I+1, Z2, X21(I,I), 1 )
  409:             ELSE
  410:                CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), 1 )
  411:                CALL DAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I,I-1),
  412:      $                     1, X21(I,I), 1 )
  413:             END IF
  414: *
  415:             THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), 1 ),
  416:      $                 DNRM2( P-I+1, X11(I,I), 1 ) )
  417: *
  418:             IF( P .GT. I ) THEN
  419:                CALL DLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  420:             ELSE IF( P .EQ. I ) THEN
  421:                CALL DLARFGP( P-I+1, X11(I,I), X11(I,I), 1, TAUP1(I) )
  422:             END IF
  423:             X11(I,I) = ONE
  424:             IF ( M-P .GT. I ) THEN
  425:                CALL DLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1,
  426:      $                       TAUP2(I) )
  427:             ELSE IF ( M-P .EQ. I ) THEN
  428:                CALL DLARFGP( M-P-I+1, X21(I,I), X21(I,I), 1, TAUP2(I) )
  429:             END IF
  430:             X21(I,I) = ONE
  431: *
  432:             IF ( Q .GT. I ) THEN
  433:                CALL DLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I),
  434:      $                     X11(I,I+1), LDX11, WORK )
  435:             END IF
  436:             IF ( M-Q+1 .GT. I ) THEN
  437:                CALL DLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1, TAUP1(I),
  438:      $                     X12(I,I), LDX12, WORK )
  439:             END IF
  440:             IF ( Q .GT. I ) THEN
  441:                CALL DLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, TAUP2(I),
  442:      $                     X21(I,I+1), LDX21, WORK )
  443:             END IF
  444:             IF ( M-Q+1 .GT. I ) THEN
  445:                CALL DLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1, TAUP2(I),
  446:      $                     X22(I,I), LDX22, WORK )
  447:             END IF
  448: *
  449:             IF( I .LT. Q ) THEN
  450:                CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I,I+1),
  451:      $                     LDX11 )
  452:                CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I,I+1), LDX21,
  453:      $                     X11(I,I+1), LDX11 )
  454:             END IF
  455:             CALL DSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), LDX12 )
  456:             CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), LDX22,
  457:      $                  X12(I,I), LDX12 )
  458: *
  459:             IF( I .LT. Q )
  460:      $         PHI(I) = ATAN2( DNRM2( Q-I, X11(I,I+1), LDX11 ),
  461:      $                  DNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
  462: *
  463:             IF( I .LT. Q ) THEN
  464:                IF ( Q-I .EQ. 1 ) THEN
  465:                   CALL DLARFGP( Q-I, X11(I,I+1), X11(I,I+1), LDX11,
  466:      $                          TAUQ1(I) )
  467:                ELSE
  468:                   CALL DLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
  469:      $                          TAUQ1(I) )
  470:                END IF
  471:                X11(I,I+1) = ONE
  472:             END IF
  473:             IF ( Q+I-1 .LT. M ) THEN
  474:                IF ( M-Q .EQ. I ) THEN
  475:                   CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
  476:      $                          TAUQ2(I) )
  477:                ELSE
  478:                   CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  479:      $                          TAUQ2(I) )
  480:                END IF
  481:             END IF
  482:             X12(I,I) = ONE
  483: *
  484:             IF( I .LT. Q ) THEN
  485:                CALL DLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  486:      $                     X11(I+1,I+1), LDX11, WORK )
  487:                CALL DLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  488:      $                     X21(I+1,I+1), LDX21, WORK )
  489:             END IF
  490:             IF ( P .GT. I ) THEN
  491:                CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  492:      $                     X12(I+1,I), LDX12, WORK )
  493:             END IF
  494:             IF ( M-P .GT. I ) THEN
  495:                CALL DLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12,
  496:      $                     TAUQ2(I), X22(I+1,I), LDX22, WORK )
  497:             END IF
  498: *
  499:          END DO
  500: *
  501: *        Reduce columns Q + 1, ..., P of X12, X22
  502: *
  503:          DO I = Q + 1, P
  504: *
  505:             CALL DSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), LDX12 )
  506:             IF ( I .GE. M-Q ) THEN
  507:                CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12,
  508:      $                       TAUQ2(I) )
  509:             ELSE
  510:                CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  511:      $                       TAUQ2(I) )
  512:             END IF
  513:             X12(I,I) = ONE
  514: *
  515:             IF ( P .GT. I ) THEN
  516:                CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  517:      $                     X12(I+1,I), LDX12, WORK )
  518:             END IF
  519:             IF( M-P-Q .GE. 1 )
  520:      $         CALL DLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
  521:      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
  522: *
  523:          END DO
  524: *
  525: *        Reduce columns P + 1, ..., M - Q of X12, X22
  526: *
  527:          DO I = 1, M - P - Q
  528: *
  529:             CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(Q+I,P+I), LDX22 )
  530:             IF ( I .EQ. M-P-Q ) THEN
  531:                CALL DLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I),
  532:      $                       LDX22, TAUQ2(P+I) )
  533:             ELSE
  534:                CALL DLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
  535:      $                       LDX22, TAUQ2(P+I) )
  536:             END IF
  537:             X22(Q+I,P+I) = ONE
  538:             IF ( I .LT. M-P-Q ) THEN
  539:                CALL DLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
  540:      $                     TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
  541:             END IF
  542: *
  543:          END DO
  544: *
  545:       ELSE
  546: *
  547: *        Reduce columns 1, ..., Q of X11, X12, X21, X22
  548: *
  549:          DO I = 1, Q
  550: *
  551:             IF( I .EQ. 1 ) THEN
  552:                CALL DSCAL( P-I+1, Z1, X11(I,I), LDX11 )
  553:             ELSE
  554:                CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), LDX11 )
  555:                CALL DAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I-1,I),
  556:      $                     LDX12, X11(I,I), LDX11 )
  557:             END IF
  558:             IF( I .EQ. 1 ) THEN
  559:                CALL DSCAL( M-P-I+1, Z2, X21(I,I), LDX21 )
  560:             ELSE
  561:                CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), LDX21 )
  562:                CALL DAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I-1,I),
  563:      $                     LDX22, X21(I,I), LDX21 )
  564:             END IF
  565: *
  566:             THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), LDX21 ),
  567:      $                 DNRM2( P-I+1, X11(I,I), LDX11 ) )
  568: *
  569:             CALL DLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
  570:             X11(I,I) = ONE
  571:             IF ( I .EQ. M-P ) THEN
  572:                CALL DLARFGP( M-P-I+1, X21(I,I), X21(I,I), LDX21,
  573:      $                    TAUP2(I) )
  574:             ELSE
  575:                CALL DLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
  576:      $                    TAUP2(I) )
  577:             END IF
  578:             X21(I,I) = ONE
  579: *
  580:             IF ( Q .GT. I ) THEN
  581:                CALL DLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
  582:      $                     X11(I+1,I), LDX11, WORK )
  583:             END IF
  584:             IF ( M-Q+1 .GT. I ) THEN
  585:                CALL DLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11,
  586:      $                     TAUP1(I), X12(I,I), LDX12, WORK )
  587:             END IF
  588:             IF ( Q .GT. I ) THEN
  589:                CALL DLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
  590:      $                     X21(I+1,I), LDX21, WORK )
  591:             END IF
  592:             IF ( M-Q+1 .GT. I ) THEN
  593:                CALL DLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
  594:      $                     TAUP2(I), X22(I,I), LDX22, WORK )
  595:             END IF
  596: *
  597:             IF( I .LT. Q ) THEN
  598:                CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I+1,I), 1 )
  599:                CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I+1,I), 1,
  600:      $                     X11(I+1,I), 1 )
  601:             END IF
  602:             CALL DSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), 1 )
  603:             CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), 1,
  604:      $                  X12(I,I), 1 )
  605: *
  606:             IF( I .LT. Q )
  607:      $         PHI(I) = ATAN2( DNRM2( Q-I, X11(I+1,I), 1 ),
  608:      $                  DNRM2( M-Q-I+1, X12(I,I), 1 ) )
  609: *
  610:             IF( I .LT. Q ) THEN
  611:                IF ( Q-I .EQ. 1) THEN
  612:                   CALL DLARFGP( Q-I, X11(I+1,I), X11(I+1,I), 1,
  613:      $                          TAUQ1(I) )
  614:                ELSE
  615:                   CALL DLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1,
  616:      $                          TAUQ1(I) )
  617:                END IF
  618:                X11(I+1,I) = ONE
  619:             END IF
  620:             IF ( M-Q .GT. I ) THEN
  621:                CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1,
  622:      $                       TAUQ2(I) )
  623:             ELSE
  624:                CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I), 1,
  625:      $                       TAUQ2(I) )
  626:             END IF
  627:             X12(I,I) = ONE
  628: *
  629:             IF( I .LT. Q ) THEN
  630:                CALL DLARF( 'L', Q-I, P-I, X11(I+1,I), 1, TAUQ1(I),
  631:      $                     X11(I+1,I+1), LDX11, WORK )
  632:                CALL DLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1, TAUQ1(I),
  633:      $                     X21(I+1,I+1), LDX21, WORK )
  634:             END IF
  635:             CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
  636:      $                  X12(I,I+1), LDX12, WORK )
  637:             IF ( M-P-I .GT. 0 ) THEN
  638:                CALL DLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1, TAUQ2(I),
  639:      $                     X22(I,I+1), LDX22, WORK )
  640:             END IF
  641: *
  642:          END DO
  643: *
  644: *        Reduce columns Q + 1, ..., P of X12, X22
  645: *
  646:          DO I = Q + 1, P
  647: *
  648:             CALL DSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), 1 )
  649:             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  650:             X12(I,I) = ONE
  651: *
  652:             IF ( P .GT. I ) THEN
  653:                CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
  654:      $                  X12(I,I+1), LDX12, WORK )
  655:             END IF
  656:             IF( M-P-Q .GE. 1 )
  657:      $         CALL DLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1, TAUQ2(I),
  658:      $                     X22(I,Q+1), LDX22, WORK )
  659: *
  660:          END DO
  661: *
  662: *        Reduce columns P + 1, ..., M - Q of X12, X22
  663: *
  664:          DO I = 1, M - P - Q
  665: *
  666:             CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(P+I,Q+I), 1 )
  667:             IF ( M-P-Q .EQ. I ) THEN
  668:                CALL DLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I,Q+I), 1,
  669:      $                       TAUQ2(P+I) )
  670:             ELSE
  671:                CALL DLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
  672:      $                       TAUQ2(P+I) )
  673:                CALL DLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
  674:      $                  TAUQ2(P+I), X22(P+I,Q+I+1), LDX22, WORK )
  675:             END IF
  676:             X22(P+I,Q+I) = ONE
  677: *
  678:          END DO
  679: *
  680:       END IF
  681: *
  682:       RETURN
  683: *
  684: *     End of DORBDB
  685: *
  686:       END
  687: 

CVSweb interface <joel.bertrand@systella.fr>