File:  [local] / rpl / lapack / lapack / dorbdb.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:34 2010 UTC (13 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
    2:      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
    3:      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
    4:       IMPLICIT NONE
    5: *
    6: *  -- LAPACK routine (version 3.3.0) --
    7: *
    8: *  -- Contributed by Brian Sutton of the Randolph-Macon College --
    9: *  -- November 2010
   10: *
   11: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   12: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
   13: *
   14: *     .. Scalar Arguments ..
   15:       CHARACTER          SIGNS, TRANS
   16:       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
   17:      $                   Q
   18: *     ..
   19: *     .. Array Arguments ..
   20:       DOUBLE PRECISION   PHI( * ), THETA( * )
   21:       DOUBLE PRECISION   TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
   22:      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
   23:      $                   X21( LDX21, * ), X22( LDX22, * )
   24: *     ..
   25: *
   26: *  Purpose
   27: *  =======
   28: *
   29: *  DORBDB simultaneously bidiagonalizes the blocks of an M-by-M
   30: *  partitioned orthogonal matrix X:
   31: *
   32: *                                  [ B11 | B12 0  0 ]
   33: *      [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**T
   34: *  X = [-----------] = [---------] [----------------] [---------]   .
   35: *      [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
   36: *                                  [  0  |  0  0  I ]
   37: *
   38: *  X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
   39: *  not the case, then X must be transposed and/or permuted. This can be
   40: *  done in constant time using the TRANS and SIGNS options. See DORCSD
   41: *  for details.)
   42: *
   43: *  The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
   44: *  (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
   45: *  represented implicitly by Householder vectors.
   46: *
   47: *  B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
   48: *  implicitly by angles THETA, PHI.
   49: *
   50: *  Arguments
   51: *  =========
   52: *
   53: *  TRANS   (input) CHARACTER
   54: *          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
   55: *                      order;
   56: *          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
   57: *                      major order.
   58: *
   59: *  SIGNS   (input) CHARACTER
   60: *          = 'O':      The lower-left block is made nonpositive (the
   61: *                      "other" convention);
   62: *          otherwise:  The upper-right block is made nonpositive (the
   63: *                      "default" convention).
   64: *
   65: *  M       (input) INTEGER
   66: *          The number of rows and columns in X.
   67: *
   68: *  P       (input) INTEGER
   69: *          The number of rows in X11 and X12. 0 <= P <= M.
   70: *
   71: *  Q       (input) INTEGER
   72: *          The number of columns in X11 and X21. 0 <= Q <=
   73: *          MIN(P,M-P,M-Q).
   74: *
   75: *  X11     (input/output) DOUBLE PRECISION array, dimension (LDX11,Q)
   76: *          On entry, the top-left block of the orthogonal matrix to be
   77: *          reduced. On exit, the form depends on TRANS:
   78: *          If TRANS = 'N', then
   79: *             the columns of tril(X11) specify reflectors for P1,
   80: *             the rows of triu(X11,1) specify reflectors for Q1;
   81: *          else TRANS = 'T', and
   82: *             the rows of triu(X11) specify reflectors for P1,
   83: *             the columns of tril(X11,-1) specify reflectors for Q1.
   84: *
   85: *  LDX11   (input) INTEGER
   86: *          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
   87: *          P; else LDX11 >= Q.
   88: *
   89: *  X12     (input/output) DOUBLE PRECISION array, dimension (LDX12,M-Q)
   90: *          On entry, the top-right block of the orthogonal matrix to
   91: *          be reduced. On exit, the form depends on TRANS:
   92: *          If TRANS = 'N', then
   93: *             the rows of triu(X12) specify the first P reflectors for
   94: *             Q2;
   95: *          else TRANS = 'T', and
   96: *             the columns of tril(X12) specify the first P reflectors
   97: *             for Q2.
   98: *
   99: *  LDX12   (input) INTEGER
  100: *          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
  101: *          P; else LDX11 >= M-Q.
  102: *
  103: *  X21     (input/output) DOUBLE PRECISION array, dimension (LDX21,Q)
  104: *          On entry, the bottom-left block of the orthogonal matrix to
  105: *          be reduced. On exit, the form depends on TRANS:
  106: *          If TRANS = 'N', then
  107: *             the columns of tril(X21) specify reflectors for P2;
  108: *          else TRANS = 'T', and
  109: *             the rows of triu(X21) specify reflectors for P2.
  110: *
  111: *  LDX21   (input) INTEGER
  112: *          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
  113: *          M-P; else LDX21 >= Q.
  114: *
  115: *  X22     (input/output) DOUBLE PRECISION array, dimension (LDX22,M-Q)
  116: *          On entry, the bottom-right block of the orthogonal matrix to
  117: *          be reduced. On exit, the form depends on TRANS:
  118: *          If TRANS = 'N', then
  119: *             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
  120: *             M-P-Q reflectors for Q2,
  121: *          else TRANS = 'T', and
  122: *             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
  123: *             M-P-Q reflectors for P2.
  124: *
  125: *  LDX22   (input) INTEGER
  126: *          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
  127: *          M-P; else LDX22 >= M-Q.
  128: *
  129: *  THETA   (output) DOUBLE PRECISION array, dimension (Q)
  130: *          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  131: *          be computed from the angles THETA and PHI. See Further
  132: *          Details.
  133: *
  134: *  PHI     (output) DOUBLE PRECISION array, dimension (Q-1)
  135: *          The entries of the bidiagonal blocks B11, B12, B21, B22 can
  136: *          be computed from the angles THETA and PHI. See Further
  137: *          Details.
  138: *
  139: *  TAUP1   (output) DOUBLE PRECISION array, dimension (P)
  140: *          The scalar factors of the elementary reflectors that define
  141: *          P1.
  142: *
  143: *  TAUP2   (output) DOUBLE PRECISION array, dimension (M-P)
  144: *          The scalar factors of the elementary reflectors that define
  145: *          P2.
  146: *
  147: *  TAUQ1   (output) DOUBLE PRECISION array, dimension (Q)
  148: *          The scalar factors of the elementary reflectors that define
  149: *          Q1.
  150: *
  151: *  TAUQ2   (output) DOUBLE PRECISION array, dimension (M-Q)
  152: *          The scalar factors of the elementary reflectors that define
  153: *          Q2.
  154: *
  155: *  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)
  156: *
  157: *  LWORK   (input) INTEGER
  158: *          The dimension of the array WORK. LWORK >= M-Q.
  159: *
  160: *          If LWORK = -1, then a workspace query is assumed; the routine
  161: *          only calculates the optimal size of the WORK array, returns
  162: *          this value as the first entry of the WORK array, and no error
  163: *          message related to LWORK is issued by XERBLA.
  164: *
  165: *  INFO    (output) INTEGER
  166: *          = 0:  successful exit.
  167: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  168: *
  169: *  Further Details
  170: *  ===============
  171: *
  172: *  The bidiagonal blocks B11, B12, B21, and B22 are represented
  173: *  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
  174: *  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
  175: *  lower bidiagonal. Every entry in each bidiagonal band is a product
  176: *  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
  177: *  [1] or DORCSD for details.
  178: *
  179: *  P1, P2, Q1, and Q2 are represented as products of elementary
  180: *  reflectors. See DORCSD for details on generating P1, P2, Q1, and Q2
  181: *  using DORGQR and DORGLQ.
  182: *
  183: *  Reference
  184: *  =========
  185: *
  186: *  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  187: *      Algorithms, 50(1):33-65, 2009.
  188: *
  189: *  ====================================================================
  190: *
  191: *     .. Parameters ..
  192:       DOUBLE PRECISION   REALONE
  193:       PARAMETER          ( REALONE = 1.0D0 )
  194:       DOUBLE PRECISION   NEGONE, ONE
  195:       PARAMETER          ( NEGONE = -1.0D0, ONE = 1.0D0 )
  196: *     ..
  197: *     .. Local Scalars ..
  198:       LOGICAL            COLMAJOR, LQUERY
  199:       INTEGER            I, LWORKMIN, LWORKOPT
  200:       DOUBLE PRECISION   Z1, Z2, Z3, Z4
  201: *     ..
  202: *     .. External Subroutines ..
  203:       EXTERNAL           DAXPY, DLARF, DLARFGP, DSCAL, XERBLA
  204: *     ..
  205: *     .. External Functions ..
  206:       DOUBLE PRECISION   DNRM2
  207:       LOGICAL            LSAME
  208:       EXTERNAL           DNRM2, LSAME
  209: *     ..
  210: *     .. Intrinsic Functions
  211:       INTRINSIC          ATAN2, COS, MAX, MIN, SIN
  212: *     ..
  213: *     .. Executable Statements ..
  214: *
  215: *     Test input arguments
  216: *
  217:       INFO = 0
  218:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  219:       IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
  220:          Z1 = REALONE
  221:          Z2 = REALONE
  222:          Z3 = REALONE
  223:          Z4 = REALONE
  224:       ELSE
  225:          Z1 = REALONE
  226:          Z2 = -REALONE
  227:          Z3 = REALONE
  228:          Z4 = -REALONE
  229:       END IF
  230:       LQUERY = LWORK .EQ. -1
  231: *
  232:       IF( M .LT. 0 ) THEN
  233:          INFO = -3
  234:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  235:          INFO = -4
  236:       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
  237:      $         Q .GT. M-Q ) THEN
  238:          INFO = -5
  239:       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
  240:          INFO = -7
  241:       ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
  242:          INFO = -7
  243:       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
  244:          INFO = -9
  245:       ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
  246:          INFO = -9
  247:       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
  248:          INFO = -11
  249:       ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
  250:          INFO = -11
  251:       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
  252:          INFO = -13
  253:       ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
  254:          INFO = -13
  255:       END IF
  256: *
  257: *     Compute workspace
  258: *
  259:       IF( INFO .EQ. 0 ) THEN
  260:          LWORKOPT = M - Q
  261:          LWORKMIN = M - Q
  262:          WORK(1) = LWORKOPT
  263:          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
  264:             INFO = -21
  265:          END IF
  266:       END IF
  267:       IF( INFO .NE. 0 ) THEN
  268:          CALL XERBLA( 'xORBDB', -INFO )
  269:          RETURN
  270:       ELSE IF( LQUERY ) THEN
  271:          RETURN
  272:       END IF
  273: *
  274: *     Handle column-major and row-major separately
  275: *
  276:       IF( COLMAJOR ) THEN
  277: *
  278: *        Reduce columns 1, ..., Q of X11, X12, X21, and X22 
  279: *
  280:          DO I = 1, Q
  281: *
  282:             IF( I .EQ. 1 ) THEN
  283:                CALL DSCAL( P-I+1, Z1, X11(I,I), 1 )
  284:             ELSE
  285:                CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), 1 )
  286:                CALL DAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I,I-1),
  287:      $                     1, X11(I,I), 1 )
  288:             END IF
  289:             IF( I .EQ. 1 ) THEN
  290:                CALL DSCAL( M-P-I+1, Z2, X21(I,I), 1 )
  291:             ELSE
  292:                CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), 1 )
  293:                CALL DAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I,I-1),
  294:      $                     1, X21(I,I), 1 )
  295:             END IF
  296: *
  297:             THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), 1 ),
  298:      $                 DNRM2( P-I+1, X11(I,I), 1 ) )
  299: *
  300:             CALL DLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
  301:             X11(I,I) = ONE
  302:             CALL DLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
  303:             X21(I,I) = ONE
  304: *
  305:             CALL DLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I),
  306:      $                  X11(I,I+1), LDX11, WORK )
  307:             CALL DLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1, TAUP1(I),
  308:      $                  X12(I,I), LDX12, WORK )
  309:             CALL DLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, TAUP2(I),
  310:      $                  X21(I,I+1), LDX21, WORK )
  311:             CALL DLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1, TAUP2(I),
  312:      $                  X22(I,I), LDX22, WORK )
  313: *
  314:             IF( I .LT. Q ) THEN
  315:                CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I,I+1),
  316:      $                     LDX11 )
  317:                CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I,I+1), LDX21,
  318:      $                     X11(I,I+1), LDX11 )
  319:             END IF
  320:             CALL DSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), LDX12 )
  321:             CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), LDX22,
  322:      $                  X12(I,I), LDX12 )
  323: *
  324:             IF( I .LT. Q )
  325:      $         PHI(I) = ATAN2( DNRM2( Q-I, X11(I,I+1), LDX11 ),
  326:      $                  DNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
  327: *
  328:             IF( I .LT. Q ) THEN
  329:                CALL DLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
  330:      $                       TAUQ1(I) )
  331:                X11(I,I+1) = ONE
  332:             END IF
  333:             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  334:      $                    TAUQ2(I) )
  335:             X12(I,I) = ONE
  336: *
  337:             IF( I .LT. Q ) THEN
  338:                CALL DLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  339:      $                     X11(I+1,I+1), LDX11, WORK )
  340:                CALL DLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
  341:      $                     X21(I+1,I+1), LDX21, WORK )
  342:             END IF
  343:             CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  344:      $                  X12(I+1,I), LDX12, WORK )
  345:             CALL DLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  346:      $                  X22(I+1,I), LDX22, WORK )
  347: *
  348:          END DO
  349: *
  350: *        Reduce columns Q + 1, ..., P of X12, X22
  351: *
  352:          DO I = Q + 1, P
  353: *
  354:             CALL DSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), LDX12 )
  355:             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
  356:      $                    TAUQ2(I) )
  357:             X12(I,I) = ONE
  358: *
  359:             CALL DLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
  360:      $                  X12(I+1,I), LDX12, WORK )
  361:             IF( M-P-Q .GE. 1 )
  362:      $         CALL DLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
  363:      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
  364: *
  365:          END DO
  366: *
  367: *        Reduce columns P + 1, ..., M - Q of X12, X22
  368: *
  369:          DO I = 1, M - P - Q
  370: *
  371:             CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(Q+I,P+I), LDX22 )
  372:             CALL DLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
  373:      $                    LDX22, TAUQ2(P+I) )
  374:             X22(Q+I,P+I) = ONE
  375:             CALL DLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
  376:      $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
  377: *
  378:          END DO
  379: *
  380:       ELSE
  381: *
  382: *        Reduce columns 1, ..., Q of X11, X12, X21, X22
  383: *
  384:          DO I = 1, Q
  385: *
  386:             IF( I .EQ. 1 ) THEN
  387:                CALL DSCAL( P-I+1, Z1, X11(I,I), LDX11 )
  388:             ELSE
  389:                CALL DSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), LDX11 )
  390:                CALL DAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I-1,I),
  391:      $                     LDX12, X11(I,I), LDX11 )
  392:             END IF
  393:             IF( I .EQ. 1 ) THEN
  394:                CALL DSCAL( M-P-I+1, Z2, X21(I,I), LDX21 )
  395:             ELSE
  396:                CALL DSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), LDX21 )
  397:                CALL DAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I-1,I),
  398:      $                     LDX22, X21(I,I), LDX21 )
  399:             END IF
  400: *
  401:             THETA(I) = ATAN2( DNRM2( M-P-I+1, X21(I,I), LDX21 ),
  402:      $                 DNRM2( P-I+1, X11(I,I), LDX11 ) )
  403: *
  404:             CALL DLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
  405:             X11(I,I) = ONE
  406:             CALL DLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
  407:      $                    TAUP2(I) )
  408:             X21(I,I) = ONE
  409: *
  410:             CALL DLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
  411:      $                  X11(I+1,I), LDX11, WORK )
  412:             CALL DLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
  413:      $                  X12(I,I), LDX12, WORK )
  414:             CALL DLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
  415:      $                  X21(I+1,I), LDX21, WORK )
  416:             CALL DLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
  417:      $                  TAUP2(I), X22(I,I), LDX22, WORK )
  418: *
  419:             IF( I .LT. Q ) THEN
  420:                CALL DSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I+1,I), 1 )
  421:                CALL DAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I+1,I), 1,
  422:      $                     X11(I+1,I), 1 )
  423:             END IF
  424:             CALL DSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), 1 )
  425:             CALL DAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), 1,
  426:      $                  X12(I,I), 1 )
  427: *
  428:             IF( I .LT. Q )
  429:      $         PHI(I) = ATAN2( DNRM2( Q-I, X11(I+1,I), 1 ),
  430:      $                  DNRM2( M-Q-I+1, X12(I,I), 1 ) )
  431: *
  432:             IF( I .LT. Q ) THEN
  433:                CALL DLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
  434:                X11(I+1,I) = ONE
  435:             END IF
  436:             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  437:             X12(I,I) = ONE
  438: *
  439:             IF( I .LT. Q ) THEN
  440:                CALL DLARF( 'L', Q-I, P-I, X11(I+1,I), 1, TAUQ1(I),
  441:      $                     X11(I+1,I+1), LDX11, WORK )
  442:                CALL DLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1, TAUQ1(I),
  443:      $                     X21(I+1,I+1), LDX21, WORK )
  444:             END IF
  445:             CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
  446:      $                  X12(I,I+1), LDX12, WORK )
  447:             CALL DLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1, TAUQ2(I),
  448:      $                  X22(I,I+1), LDX22, WORK )
  449: *
  450:          END DO
  451: *
  452: *        Reduce columns Q + 1, ..., P of X12, X22
  453: *
  454:          DO I = Q + 1, P
  455: *
  456:             CALL DSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), 1 )
  457:             CALL DLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
  458:             X12(I,I) = ONE
  459: *
  460:             CALL DLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I),
  461:      $                  X12(I,I+1), LDX12, WORK )
  462:             IF( M-P-Q .GE. 1 )
  463:      $         CALL DLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1, TAUQ2(I),
  464:      $                     X22(I,Q+1), LDX22, WORK )
  465: *
  466:          END DO
  467: *
  468: *        Reduce columns P + 1, ..., M - Q of X12, X22
  469: *
  470:          DO I = 1, M - P - Q
  471: *
  472:             CALL DSCAL( M-P-Q-I+1, Z2*Z4, X22(P+I,Q+I), 1 )
  473:             CALL DLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
  474:      $                    TAUQ2(P+I) )
  475:             X22(P+I,Q+I) = ONE
  476: *
  477:             CALL DLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
  478:      $                  TAUQ2(P+I), X22(P+I,Q+I+1), LDX22, WORK )
  479: *
  480:          END DO
  481: *
  482:       END IF
  483: *
  484:       RETURN
  485: *
  486: *     End of DORBDB
  487: *
  488:       END
  489: 

CVSweb interface <joel.bertrand@systella.fr>