File:  [local] / rpl / lapack / lapack / dopmtr.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:01 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DOPMTR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DOPMTR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dopmtr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dopmtr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dopmtr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DOPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
   22: *                          INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          SIDE, TRANS, UPLO
   26: *       INTEGER            INFO, LDC, M, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   AP( * ), C( LDC, * ), TAU( * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DOPMTR overwrites the general real M-by-N matrix C with
   39: *>
   40: *>                 SIDE = 'L'     SIDE = 'R'
   41: *> TRANS = 'N':      Q * C          C * Q
   42: *> TRANS = 'T':      Q**T * C       C * Q**T
   43: *>
   44: *> where Q is a real orthogonal matrix of order nq, with nq = m if
   45: *> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
   46: *> nq-1 elementary reflectors, as returned by DSPTRD using packed
   47: *> storage:
   48: *>
   49: *> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
   50: *>
   51: *> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] SIDE
   58: *> \verbatim
   59: *>          SIDE is CHARACTER*1
   60: *>          = 'L': apply Q or Q**T from the Left;
   61: *>          = 'R': apply Q or Q**T from the Right.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] UPLO
   65: *> \verbatim
   66: *>          UPLO is CHARACTER*1
   67: *>          = 'U': Upper triangular packed storage used in previous
   68: *>                 call to DSPTRD;
   69: *>          = 'L': Lower triangular packed storage used in previous
   70: *>                 call to DSPTRD.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] TRANS
   74: *> \verbatim
   75: *>          TRANS is CHARACTER*1
   76: *>          = 'N':  No transpose, apply Q;
   77: *>          = 'T':  Transpose, apply Q**T.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] M
   81: *> \verbatim
   82: *>          M is INTEGER
   83: *>          The number of rows of the matrix C. M >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] N
   87: *> \verbatim
   88: *>          N is INTEGER
   89: *>          The number of columns of the matrix C. N >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] AP
   93: *> \verbatim
   94: *>          AP is DOUBLE PRECISION array, dimension
   95: *>                               (M*(M+1)/2) if SIDE = 'L'
   96: *>                               (N*(N+1)/2) if SIDE = 'R'
   97: *>          The vectors which define the elementary reflectors, as
   98: *>          returned by DSPTRD.  AP is modified by the routine but
   99: *>          restored on exit.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] TAU
  103: *> \verbatim
  104: *>          TAU is DOUBLE PRECISION array, dimension (M-1) if SIDE = 'L'
  105: *>                                     or (N-1) if SIDE = 'R'
  106: *>          TAU(i) must contain the scalar factor of the elementary
  107: *>          reflector H(i), as returned by DSPTRD.
  108: *> \endverbatim
  109: *>
  110: *> \param[in,out] C
  111: *> \verbatim
  112: *>          C is DOUBLE PRECISION array, dimension (LDC,N)
  113: *>          On entry, the M-by-N matrix C.
  114: *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDC
  118: *> \verbatim
  119: *>          LDC is INTEGER
  120: *>          The leading dimension of the array C. LDC >= max(1,M).
  121: *> \endverbatim
  122: *>
  123: *> \param[out] WORK
  124: *> \verbatim
  125: *>          WORK is DOUBLE PRECISION array, dimension
  126: *>                                   (N) if SIDE = 'L'
  127: *>                                   (M) if SIDE = 'R'
  128: *> \endverbatim
  129: *>
  130: *> \param[out] INFO
  131: *> \verbatim
  132: *>          INFO is INTEGER
  133: *>          = 0:  successful exit
  134: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  135: *> \endverbatim
  136: *
  137: *  Authors:
  138: *  ========
  139: *
  140: *> \author Univ. of Tennessee
  141: *> \author Univ. of California Berkeley
  142: *> \author Univ. of Colorado Denver
  143: *> \author NAG Ltd.
  144: *
  145: *> \ingroup doubleOTHERcomputational
  146: *
  147: *  =====================================================================
  148:       SUBROUTINE DOPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
  149:      $                   INFO )
  150: *
  151: *  -- LAPACK computational routine --
  152: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  153: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  154: *
  155: *     .. Scalar Arguments ..
  156:       CHARACTER          SIDE, TRANS, UPLO
  157:       INTEGER            INFO, LDC, M, N
  158: *     ..
  159: *     .. Array Arguments ..
  160:       DOUBLE PRECISION   AP( * ), C( LDC, * ), TAU( * ), WORK( * )
  161: *     ..
  162: *
  163: *  =====================================================================
  164: *
  165: *     .. Parameters ..
  166:       DOUBLE PRECISION   ONE
  167:       PARAMETER          ( ONE = 1.0D+0 )
  168: *     ..
  169: *     .. Local Scalars ..
  170:       LOGICAL            FORWRD, LEFT, NOTRAN, UPPER
  171:       INTEGER            I, I1, I2, I3, IC, II, JC, MI, NI, NQ
  172:       DOUBLE PRECISION   AII
  173: *     ..
  174: *     .. External Functions ..
  175:       LOGICAL            LSAME
  176:       EXTERNAL           LSAME
  177: *     ..
  178: *     .. External Subroutines ..
  179:       EXTERNAL           DLARF, XERBLA
  180: *     ..
  181: *     .. Intrinsic Functions ..
  182:       INTRINSIC          MAX
  183: *     ..
  184: *     .. Executable Statements ..
  185: *
  186: *     Test the input arguments
  187: *
  188:       INFO = 0
  189:       LEFT = LSAME( SIDE, 'L' )
  190:       NOTRAN = LSAME( TRANS, 'N' )
  191:       UPPER = LSAME( UPLO, 'U' )
  192: *
  193: *     NQ is the order of Q
  194: *
  195:       IF( LEFT ) THEN
  196:          NQ = M
  197:       ELSE
  198:          NQ = N
  199:       END IF
  200:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  201:          INFO = -1
  202:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  203:          INFO = -2
  204:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  205:          INFO = -3
  206:       ELSE IF( M.LT.0 ) THEN
  207:          INFO = -4
  208:       ELSE IF( N.LT.0 ) THEN
  209:          INFO = -5
  210:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  211:          INFO = -9
  212:       END IF
  213:       IF( INFO.NE.0 ) THEN
  214:          CALL XERBLA( 'DOPMTR', -INFO )
  215:          RETURN
  216:       END IF
  217: *
  218: *     Quick return if possible
  219: *
  220:       IF( M.EQ.0 .OR. N.EQ.0 )
  221:      $   RETURN
  222: *
  223:       IF( UPPER ) THEN
  224: *
  225: *        Q was determined by a call to DSPTRD with UPLO = 'U'
  226: *
  227:          FORWRD = ( LEFT .AND. NOTRAN ) .OR.
  228:      $            ( .NOT.LEFT .AND. .NOT.NOTRAN )
  229: *
  230:          IF( FORWRD ) THEN
  231:             I1 = 1
  232:             I2 = NQ - 1
  233:             I3 = 1
  234:             II = 2
  235:          ELSE
  236:             I1 = NQ - 1
  237:             I2 = 1
  238:             I3 = -1
  239:             II = NQ*( NQ+1 ) / 2 - 1
  240:          END IF
  241: *
  242:          IF( LEFT ) THEN
  243:             NI = N
  244:          ELSE
  245:             MI = M
  246:          END IF
  247: *
  248:          DO 10 I = I1, I2, I3
  249:             IF( LEFT ) THEN
  250: *
  251: *              H(i) is applied to C(1:i,1:n)
  252: *
  253:                MI = I
  254:             ELSE
  255: *
  256: *              H(i) is applied to C(1:m,1:i)
  257: *
  258:                NI = I
  259:             END IF
  260: *
  261: *           Apply H(i)
  262: *
  263:             AII = AP( II )
  264:             AP( II ) = ONE
  265:             CALL DLARF( SIDE, MI, NI, AP( II-I+1 ), 1, TAU( I ), C, LDC,
  266:      $                  WORK )
  267:             AP( II ) = AII
  268: *
  269:             IF( FORWRD ) THEN
  270:                II = II + I + 2
  271:             ELSE
  272:                II = II - I - 1
  273:             END IF
  274:    10    CONTINUE
  275:       ELSE
  276: *
  277: *        Q was determined by a call to DSPTRD with UPLO = 'L'.
  278: *
  279:          FORWRD = ( LEFT .AND. .NOT.NOTRAN ) .OR.
  280:      $            ( .NOT.LEFT .AND. NOTRAN )
  281: *
  282:          IF( FORWRD ) THEN
  283:             I1 = 1
  284:             I2 = NQ - 1
  285:             I3 = 1
  286:             II = 2
  287:          ELSE
  288:             I1 = NQ - 1
  289:             I2 = 1
  290:             I3 = -1
  291:             II = NQ*( NQ+1 ) / 2 - 1
  292:          END IF
  293: *
  294:          IF( LEFT ) THEN
  295:             NI = N
  296:             JC = 1
  297:          ELSE
  298:             MI = M
  299:             IC = 1
  300:          END IF
  301: *
  302:          DO 20 I = I1, I2, I3
  303:             AII = AP( II )
  304:             AP( II ) = ONE
  305:             IF( LEFT ) THEN
  306: *
  307: *              H(i) is applied to C(i+1:m,1:n)
  308: *
  309:                MI = M - I
  310:                IC = I + 1
  311:             ELSE
  312: *
  313: *              H(i) is applied to C(1:m,i+1:n)
  314: *
  315:                NI = N - I
  316:                JC = I + 1
  317:             END IF
  318: *
  319: *           Apply H(i)
  320: *
  321:             CALL DLARF( SIDE, MI, NI, AP( II ), 1, TAU( I ),
  322:      $                  C( IC, JC ), LDC, WORK )
  323:             AP( II ) = AII
  324: *
  325:             IF( FORWRD ) THEN
  326:                II = II + NQ - I + 1
  327:             ELSE
  328:                II = II - NQ + I - 2
  329:             END IF
  330:    20    CONTINUE
  331:       END IF
  332:       RETURN
  333: *
  334: *     End of DOPMTR
  335: *
  336:       END

CVSweb interface <joel.bertrand@systella.fr>