File:  [local] / rpl / lapack / lapack / dopmtr.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:24 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b DOPMTR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DOPMTR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dopmtr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dopmtr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dopmtr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DOPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
   22: *                          INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          SIDE, TRANS, UPLO
   26: *       INTEGER            INFO, LDC, M, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   AP( * ), C( LDC, * ), TAU( * ), WORK( * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DOPMTR overwrites the general real M-by-N matrix C with
   39: *>
   40: *>                 SIDE = 'L'     SIDE = 'R'
   41: *> TRANS = 'N':      Q * C          C * Q
   42: *> TRANS = 'T':      Q**T * C       C * Q**T
   43: *>
   44: *> where Q is a real orthogonal matrix of order nq, with nq = m if
   45: *> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
   46: *> nq-1 elementary reflectors, as returned by DSPTRD using packed
   47: *> storage:
   48: *>
   49: *> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
   50: *>
   51: *> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] SIDE
   58: *> \verbatim
   59: *>          SIDE is CHARACTER*1
   60: *>          = 'L': apply Q or Q**T from the Left;
   61: *>          = 'R': apply Q or Q**T from the Right.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] UPLO
   65: *> \verbatim
   66: *>          UPLO is CHARACTER*1
   67: *>          = 'U': Upper triangular packed storage used in previous
   68: *>                 call to DSPTRD;
   69: *>          = 'L': Lower triangular packed storage used in previous
   70: *>                 call to DSPTRD.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] TRANS
   74: *> \verbatim
   75: *>          TRANS is CHARACTER*1
   76: *>          = 'N':  No transpose, apply Q;
   77: *>          = 'T':  Transpose, apply Q**T.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] M
   81: *> \verbatim
   82: *>          M is INTEGER
   83: *>          The number of rows of the matrix C. M >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] N
   87: *> \verbatim
   88: *>          N is INTEGER
   89: *>          The number of columns of the matrix C. N >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] AP
   93: *> \verbatim
   94: *>          AP is DOUBLE PRECISION array, dimension
   95: *>                               (M*(M+1)/2) if SIDE = 'L'
   96: *>                               (N*(N+1)/2) if SIDE = 'R'
   97: *>          The vectors which define the elementary reflectors, as
   98: *>          returned by DSPTRD.  AP is modified by the routine but
   99: *>          restored on exit.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] TAU
  103: *> \verbatim
  104: *>          TAU is DOUBLE PRECISION array, dimension (M-1) if SIDE = 'L'
  105: *>                                     or (N-1) if SIDE = 'R'
  106: *>          TAU(i) must contain the scalar factor of the elementary
  107: *>          reflector H(i), as returned by DSPTRD.
  108: *> \endverbatim
  109: *>
  110: *> \param[in,out] C
  111: *> \verbatim
  112: *>          C is DOUBLE PRECISION array, dimension (LDC,N)
  113: *>          On entry, the M-by-N matrix C.
  114: *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDC
  118: *> \verbatim
  119: *>          LDC is INTEGER
  120: *>          The leading dimension of the array C. LDC >= max(1,M).
  121: *> \endverbatim
  122: *>
  123: *> \param[out] WORK
  124: *> \verbatim
  125: *>          WORK is DOUBLE PRECISION array, dimension
  126: *>                                   (N) if SIDE = 'L'
  127: *>                                   (M) if SIDE = 'R'
  128: *> \endverbatim
  129: *>
  130: *> \param[out] INFO
  131: *> \verbatim
  132: *>          INFO is INTEGER
  133: *>          = 0:  successful exit
  134: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  135: *> \endverbatim
  136: *
  137: *  Authors:
  138: *  ========
  139: *
  140: *> \author Univ. of Tennessee 
  141: *> \author Univ. of California Berkeley 
  142: *> \author Univ. of Colorado Denver 
  143: *> \author NAG Ltd. 
  144: *
  145: *> \date November 2011
  146: *
  147: *> \ingroup doubleOTHERcomputational
  148: *
  149: *  =====================================================================
  150:       SUBROUTINE DOPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
  151:      $                   INFO )
  152: *
  153: *  -- LAPACK computational routine (version 3.4.0) --
  154: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  155: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156: *     November 2011
  157: *
  158: *     .. Scalar Arguments ..
  159:       CHARACTER          SIDE, TRANS, UPLO
  160:       INTEGER            INFO, LDC, M, N
  161: *     ..
  162: *     .. Array Arguments ..
  163:       DOUBLE PRECISION   AP( * ), C( LDC, * ), TAU( * ), WORK( * )
  164: *     ..
  165: *
  166: *  =====================================================================
  167: *
  168: *     .. Parameters ..
  169:       DOUBLE PRECISION   ONE
  170:       PARAMETER          ( ONE = 1.0D+0 )
  171: *     ..
  172: *     .. Local Scalars ..
  173:       LOGICAL            FORWRD, LEFT, NOTRAN, UPPER
  174:       INTEGER            I, I1, I2, I3, IC, II, JC, MI, NI, NQ
  175:       DOUBLE PRECISION   AII
  176: *     ..
  177: *     .. External Functions ..
  178:       LOGICAL            LSAME
  179:       EXTERNAL           LSAME
  180: *     ..
  181: *     .. External Subroutines ..
  182:       EXTERNAL           DLARF, XERBLA
  183: *     ..
  184: *     .. Intrinsic Functions ..
  185:       INTRINSIC          MAX
  186: *     ..
  187: *     .. Executable Statements ..
  188: *
  189: *     Test the input arguments
  190: *
  191:       INFO = 0
  192:       LEFT = LSAME( SIDE, 'L' )
  193:       NOTRAN = LSAME( TRANS, 'N' )
  194:       UPPER = LSAME( UPLO, 'U' )
  195: *
  196: *     NQ is the order of Q
  197: *
  198:       IF( LEFT ) THEN
  199:          NQ = M
  200:       ELSE
  201:          NQ = N
  202:       END IF
  203:       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  204:          INFO = -1
  205:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  206:          INFO = -2
  207:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  208:          INFO = -3
  209:       ELSE IF( M.LT.0 ) THEN
  210:          INFO = -4
  211:       ELSE IF( N.LT.0 ) THEN
  212:          INFO = -5
  213:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  214:          INFO = -9
  215:       END IF
  216:       IF( INFO.NE.0 ) THEN
  217:          CALL XERBLA( 'DOPMTR', -INFO )
  218:          RETURN
  219:       END IF
  220: *
  221: *     Quick return if possible
  222: *
  223:       IF( M.EQ.0 .OR. N.EQ.0 )
  224:      $   RETURN
  225: *
  226:       IF( UPPER ) THEN
  227: *
  228: *        Q was determined by a call to DSPTRD with UPLO = 'U'
  229: *
  230:          FORWRD = ( LEFT .AND. NOTRAN ) .OR.
  231:      $            ( .NOT.LEFT .AND. .NOT.NOTRAN )
  232: *
  233:          IF( FORWRD ) THEN
  234:             I1 = 1
  235:             I2 = NQ - 1
  236:             I3 = 1
  237:             II = 2
  238:          ELSE
  239:             I1 = NQ - 1
  240:             I2 = 1
  241:             I3 = -1
  242:             II = NQ*( NQ+1 ) / 2 - 1
  243:          END IF
  244: *
  245:          IF( LEFT ) THEN
  246:             NI = N
  247:          ELSE
  248:             MI = M
  249:          END IF
  250: *
  251:          DO 10 I = I1, I2, I3
  252:             IF( LEFT ) THEN
  253: *
  254: *              H(i) is applied to C(1:i,1:n)
  255: *
  256:                MI = I
  257:             ELSE
  258: *
  259: *              H(i) is applied to C(1:m,1:i)
  260: *
  261:                NI = I
  262:             END IF
  263: *
  264: *           Apply H(i)
  265: *
  266:             AII = AP( II )
  267:             AP( II ) = ONE
  268:             CALL DLARF( SIDE, MI, NI, AP( II-I+1 ), 1, TAU( I ), C, LDC,
  269:      $                  WORK )
  270:             AP( II ) = AII
  271: *
  272:             IF( FORWRD ) THEN
  273:                II = II + I + 2
  274:             ELSE
  275:                II = II - I - 1
  276:             END IF
  277:    10    CONTINUE
  278:       ELSE
  279: *
  280: *        Q was determined by a call to DSPTRD with UPLO = 'L'.
  281: *
  282:          FORWRD = ( LEFT .AND. .NOT.NOTRAN ) .OR.
  283:      $            ( .NOT.LEFT .AND. NOTRAN )
  284: *
  285:          IF( FORWRD ) THEN
  286:             I1 = 1
  287:             I2 = NQ - 1
  288:             I3 = 1
  289:             II = 2
  290:          ELSE
  291:             I1 = NQ - 1
  292:             I2 = 1
  293:             I3 = -1
  294:             II = NQ*( NQ+1 ) / 2 - 1
  295:          END IF
  296: *
  297:          IF( LEFT ) THEN
  298:             NI = N
  299:             JC = 1
  300:          ELSE
  301:             MI = M
  302:             IC = 1
  303:          END IF
  304: *
  305:          DO 20 I = I1, I2, I3
  306:             AII = AP( II )
  307:             AP( II ) = ONE
  308:             IF( LEFT ) THEN
  309: *
  310: *              H(i) is applied to C(i+1:m,1:n)
  311: *
  312:                MI = M - I
  313:                IC = I + 1
  314:             ELSE
  315: *
  316: *              H(i) is applied to C(1:m,i+1:n)
  317: *
  318:                NI = N - I
  319:                JC = I + 1
  320:             END IF
  321: *
  322: *           Apply H(i)
  323: *
  324:             CALL DLARF( SIDE, MI, NI, AP( II ), 1, TAU( I ),
  325:      $                  C( IC, JC ), LDC, WORK )
  326:             AP( II ) = AII
  327: *
  328:             IF( FORWRD ) THEN
  329:                II = II + NQ - I + 1
  330:             ELSE
  331:                II = II - NQ + I - 2
  332:             END IF
  333:    20    CONTINUE
  334:       END IF
  335:       RETURN
  336: *
  337: *     End of DOPMTR
  338: *
  339:       END

CVSweb interface <joel.bertrand@systella.fr>