File:  [local] / rpl / lapack / lapack / dlatrz.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:21 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DLATRZ( M, N, L, A, LDA, TAU, WORK )
    2: *
    3: *  -- LAPACK routine (version 3.2.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     June 2010
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            L, LDA, M, N
   10: *     ..
   11: *     .. Array Arguments ..
   12:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
   13: *     ..
   14: *
   15: *  Purpose
   16: *  =======
   17: *
   18: *  DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
   19: *  [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means
   20: *  of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal
   21: *  matrix and, R and A1 are M-by-M upper triangular matrices.
   22: *
   23: *  Arguments
   24: *  =========
   25: *
   26: *  M       (input) INTEGER
   27: *          The number of rows of the matrix A.  M >= 0.
   28: *
   29: *  N       (input) INTEGER
   30: *          The number of columns of the matrix A.  N >= 0.
   31: *
   32: *  L       (input) INTEGER
   33: *          The number of columns of the matrix A containing the
   34: *          meaningful part of the Householder vectors. N-M >= L >= 0.
   35: *
   36: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   37: *          On entry, the leading M-by-N upper trapezoidal part of the
   38: *          array A must contain the matrix to be factorized.
   39: *          On exit, the leading M-by-M upper triangular part of A
   40: *          contains the upper triangular matrix R, and elements N-L+1 to
   41: *          N of the first M rows of A, with the array TAU, represent the
   42: *          orthogonal matrix Z as a product of M elementary reflectors.
   43: *
   44: *  LDA     (input) INTEGER
   45: *          The leading dimension of the array A.  LDA >= max(1,M).
   46: *
   47: *  TAU     (output) DOUBLE PRECISION array, dimension (M)
   48: *          The scalar factors of the elementary reflectors.
   49: *
   50: *  WORK    (workspace) DOUBLE PRECISION array, dimension (M)
   51: *
   52: *  Further Details
   53: *  ===============
   54: *
   55: *  Based on contributions by
   56: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
   57: *
   58: *  The factorization is obtained by Householder's method.  The kth
   59: *  transformation matrix, Z( k ), which is used to introduce zeros into
   60: *  the ( m - k + 1 )th row of A, is given in the form
   61: *
   62: *     Z( k ) = ( I     0   ),
   63: *              ( 0  T( k ) )
   64: *
   65: *  where
   66: *
   67: *     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
   68: *                                                 (   0    )
   69: *                                                 ( z( k ) )
   70: *
   71: *  tau is a scalar and z( k ) is an l element vector. tau and z( k )
   72: *  are chosen to annihilate the elements of the kth row of A2.
   73: *
   74: *  The scalar tau is returned in the kth element of TAU and the vector
   75: *  u( k ) in the kth row of A2, such that the elements of z( k ) are
   76: *  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
   77: *  the upper triangular part of A1.
   78: *
   79: *  Z is given by
   80: *
   81: *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
   82: *
   83: *  =====================================================================
   84: *
   85: *     .. Parameters ..
   86:       DOUBLE PRECISION   ZERO
   87:       PARAMETER          ( ZERO = 0.0D+0 )
   88: *     ..
   89: *     .. Local Scalars ..
   90:       INTEGER            I
   91: *     ..
   92: *     .. External Subroutines ..
   93:       EXTERNAL           DLARFG, DLARZ
   94: *     ..
   95: *     .. Executable Statements ..
   96: *
   97: *     Test the input arguments
   98: *
   99: *     Quick return if possible
  100: *
  101:       IF( M.EQ.0 ) THEN
  102:          RETURN
  103:       ELSE IF( M.EQ.N ) THEN
  104:          DO 10 I = 1, N
  105:             TAU( I ) = ZERO
  106:    10    CONTINUE
  107:          RETURN
  108:       END IF
  109: *
  110:       DO 20 I = M, 1, -1
  111: *
  112: *        Generate elementary reflector H(i) to annihilate
  113: *        [ A(i,i) A(i,n-l+1:n) ]
  114: *
  115:          CALL DLARFG( L+1, A( I, I ), A( I, N-L+1 ), LDA, TAU( I ) )
  116: *
  117: *        Apply H(i) to A(1:i-1,i:n) from the right
  118: *
  119:          CALL DLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
  120:      $               TAU( I ), A( 1, I ), LDA, WORK )
  121: *
  122:    20 CONTINUE
  123: *
  124:       RETURN
  125: *
  126: *     End of DLATRZ
  127: *
  128:       END

CVSweb interface <joel.bertrand@systella.fr>