Annotation of rpl/lapack/lapack/dlatrz.f, revision 1.20

1.13      bertrand    1: *> \brief \b DLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download DLATRZ + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrz.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrz.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrz.f">
1.10      bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLATRZ( M, N, L, A, LDA, TAU, WORK )
1.17      bertrand   22: *
1.10      bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            L, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.17      bertrand   29: *
1.10      bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
                     37: *> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means
                     38: *> of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal
                     39: *> matrix and, R and A1 are M-by-M upper triangular matrices.
                     40: *> \endverbatim
                     41: *
                     42: *  Arguments:
                     43: *  ==========
                     44: *
                     45: *> \param[in] M
                     46: *> \verbatim
                     47: *>          M is INTEGER
                     48: *>          The number of rows of the matrix A.  M >= 0.
                     49: *> \endverbatim
                     50: *>
                     51: *> \param[in] N
                     52: *> \verbatim
                     53: *>          N is INTEGER
                     54: *>          The number of columns of the matrix A.  N >= 0.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] L
                     58: *> \verbatim
                     59: *>          L is INTEGER
                     60: *>          The number of columns of the matrix A containing the
                     61: *>          meaningful part of the Householder vectors. N-M >= L >= 0.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in,out] A
                     65: *> \verbatim
                     66: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     67: *>          On entry, the leading M-by-N upper trapezoidal part of the
                     68: *>          array A must contain the matrix to be factorized.
                     69: *>          On exit, the leading M-by-M upper triangular part of A
                     70: *>          contains the upper triangular matrix R, and elements N-L+1 to
                     71: *>          N of the first M rows of A, with the array TAU, represent the
                     72: *>          orthogonal matrix Z as a product of M elementary reflectors.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] LDA
                     76: *> \verbatim
                     77: *>          LDA is INTEGER
                     78: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[out] TAU
                     82: *> \verbatim
                     83: *>          TAU is DOUBLE PRECISION array, dimension (M)
                     84: *>          The scalar factors of the elementary reflectors.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] WORK
                     88: *> \verbatim
                     89: *>          WORK is DOUBLE PRECISION array, dimension (M)
                     90: *> \endverbatim
                     91: *
                     92: *  Authors:
                     93: *  ========
                     94: *
1.17      bertrand   95: *> \author Univ. of Tennessee
                     96: *> \author Univ. of California Berkeley
                     97: *> \author Univ. of Colorado Denver
                     98: *> \author NAG Ltd.
1.10      bertrand   99: *
                    100: *> \ingroup doubleOTHERcomputational
                    101: *
                    102: *> \par Contributors:
                    103: *  ==================
                    104: *>
                    105: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
                    106: *
                    107: *> \par Further Details:
                    108: *  =====================
                    109: *>
                    110: *> \verbatim
                    111: *>
                    112: *>  The factorization is obtained by Householder's method.  The kth
                    113: *>  transformation matrix, Z( k ), which is used to introduce zeros into
                    114: *>  the ( m - k + 1 )th row of A, is given in the form
                    115: *>
                    116: *>     Z( k ) = ( I     0   ),
                    117: *>              ( 0  T( k ) )
                    118: *>
                    119: *>  where
                    120: *>
                    121: *>     T( k ) = I - tau*u( k )*u( k )**T,   u( k ) = (   1    ),
                    122: *>                                                 (   0    )
                    123: *>                                                 ( z( k ) )
                    124: *>
                    125: *>  tau is a scalar and z( k ) is an l element vector. tau and z( k )
                    126: *>  are chosen to annihilate the elements of the kth row of A2.
                    127: *>
                    128: *>  The scalar tau is returned in the kth element of TAU and the vector
                    129: *>  u( k ) in the kth row of A2, such that the elements of z( k ) are
                    130: *>  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
                    131: *>  the upper triangular part of A1.
                    132: *>
                    133: *>  Z is given by
                    134: *>
                    135: *>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
                    136: *> \endverbatim
                    137: *>
                    138: *  =====================================================================
1.1       bertrand  139:       SUBROUTINE DLATRZ( M, N, L, A, LDA, TAU, WORK )
                    140: *
1.20    ! bertrand  141: *  -- LAPACK computational routine --
1.1       bertrand  142: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    143: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    144: *
                    145: *     .. Scalar Arguments ..
                    146:       INTEGER            L, LDA, M, N
                    147: *     ..
                    148: *     .. Array Arguments ..
                    149:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                    150: *     ..
                    151: *
                    152: *  =====================================================================
                    153: *
                    154: *     .. Parameters ..
                    155:       DOUBLE PRECISION   ZERO
                    156:       PARAMETER          ( ZERO = 0.0D+0 )
                    157: *     ..
                    158: *     .. Local Scalars ..
                    159:       INTEGER            I
                    160: *     ..
                    161: *     .. External Subroutines ..
1.5       bertrand  162:       EXTERNAL           DLARFG, DLARZ
1.1       bertrand  163: *     ..
                    164: *     .. Executable Statements ..
                    165: *
                    166: *     Test the input arguments
                    167: *
                    168: *     Quick return if possible
                    169: *
                    170:       IF( M.EQ.0 ) THEN
                    171:          RETURN
                    172:       ELSE IF( M.EQ.N ) THEN
                    173:          DO 10 I = 1, N
                    174:             TAU( I ) = ZERO
                    175:    10    CONTINUE
                    176:          RETURN
                    177:       END IF
                    178: *
                    179:       DO 20 I = M, 1, -1
                    180: *
                    181: *        Generate elementary reflector H(i) to annihilate
                    182: *        [ A(i,i) A(i,n-l+1:n) ]
                    183: *
1.5       bertrand  184:          CALL DLARFG( L+1, A( I, I ), A( I, N-L+1 ), LDA, TAU( I ) )
1.1       bertrand  185: *
                    186: *        Apply H(i) to A(1:i-1,i:n) from the right
                    187: *
                    188:          CALL DLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
                    189:      $               TAU( I ), A( 1, I ), LDA, WORK )
                    190: *
                    191:    20 CONTINUE
                    192: *
                    193:       RETURN
                    194: *
                    195: *     End of DLATRZ
                    196: *
                    197:       END

CVSweb interface <joel.bertrand@systella.fr>