Annotation of rpl/lapack/lapack/dlatrz.f, revision 1.10

1.10    ! bertrand    1: *> \brief \b DLATRZ
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLATRZ + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrz.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrz.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrz.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLATRZ( M, N, L, A, LDA, TAU, WORK )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER            L, LDA, M, N
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
        !            28: *       ..
        !            29: *  
        !            30: *
        !            31: *> \par Purpose:
        !            32: *  =============
        !            33: *>
        !            34: *> \verbatim
        !            35: *>
        !            36: *> DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
        !            37: *> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means
        !            38: *> of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal
        !            39: *> matrix and, R and A1 are M-by-M upper triangular matrices.
        !            40: *> \endverbatim
        !            41: *
        !            42: *  Arguments:
        !            43: *  ==========
        !            44: *
        !            45: *> \param[in] M
        !            46: *> \verbatim
        !            47: *>          M is INTEGER
        !            48: *>          The number of rows of the matrix A.  M >= 0.
        !            49: *> \endverbatim
        !            50: *>
        !            51: *> \param[in] N
        !            52: *> \verbatim
        !            53: *>          N is INTEGER
        !            54: *>          The number of columns of the matrix A.  N >= 0.
        !            55: *> \endverbatim
        !            56: *>
        !            57: *> \param[in] L
        !            58: *> \verbatim
        !            59: *>          L is INTEGER
        !            60: *>          The number of columns of the matrix A containing the
        !            61: *>          meaningful part of the Householder vectors. N-M >= L >= 0.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in,out] A
        !            65: *> \verbatim
        !            66: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            67: *>          On entry, the leading M-by-N upper trapezoidal part of the
        !            68: *>          array A must contain the matrix to be factorized.
        !            69: *>          On exit, the leading M-by-M upper triangular part of A
        !            70: *>          contains the upper triangular matrix R, and elements N-L+1 to
        !            71: *>          N of the first M rows of A, with the array TAU, represent the
        !            72: *>          orthogonal matrix Z as a product of M elementary reflectors.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in] LDA
        !            76: *> \verbatim
        !            77: *>          LDA is INTEGER
        !            78: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[out] TAU
        !            82: *> \verbatim
        !            83: *>          TAU is DOUBLE PRECISION array, dimension (M)
        !            84: *>          The scalar factors of the elementary reflectors.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[out] WORK
        !            88: *> \verbatim
        !            89: *>          WORK is DOUBLE PRECISION array, dimension (M)
        !            90: *> \endverbatim
        !            91: *
        !            92: *  Authors:
        !            93: *  ========
        !            94: *
        !            95: *> \author Univ. of Tennessee 
        !            96: *> \author Univ. of California Berkeley 
        !            97: *> \author Univ. of Colorado Denver 
        !            98: *> \author NAG Ltd. 
        !            99: *
        !           100: *> \date November 2011
        !           101: *
        !           102: *> \ingroup doubleOTHERcomputational
        !           103: *
        !           104: *> \par Contributors:
        !           105: *  ==================
        !           106: *>
        !           107: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
        !           108: *
        !           109: *> \par Further Details:
        !           110: *  =====================
        !           111: *>
        !           112: *> \verbatim
        !           113: *>
        !           114: *>  The factorization is obtained by Householder's method.  The kth
        !           115: *>  transformation matrix, Z( k ), which is used to introduce zeros into
        !           116: *>  the ( m - k + 1 )th row of A, is given in the form
        !           117: *>
        !           118: *>     Z( k ) = ( I     0   ),
        !           119: *>              ( 0  T( k ) )
        !           120: *>
        !           121: *>  where
        !           122: *>
        !           123: *>     T( k ) = I - tau*u( k )*u( k )**T,   u( k ) = (   1    ),
        !           124: *>                                                 (   0    )
        !           125: *>                                                 ( z( k ) )
        !           126: *>
        !           127: *>  tau is a scalar and z( k ) is an l element vector. tau and z( k )
        !           128: *>  are chosen to annihilate the elements of the kth row of A2.
        !           129: *>
        !           130: *>  The scalar tau is returned in the kth element of TAU and the vector
        !           131: *>  u( k ) in the kth row of A2, such that the elements of z( k ) are
        !           132: *>  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
        !           133: *>  the upper triangular part of A1.
        !           134: *>
        !           135: *>  Z is given by
        !           136: *>
        !           137: *>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
        !           138: *> \endverbatim
        !           139: *>
        !           140: *  =====================================================================
1.1       bertrand  141:       SUBROUTINE DLATRZ( M, N, L, A, LDA, TAU, WORK )
                    142: *
1.10    ! bertrand  143: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  144: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    145: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  146: *     November 2011
1.1       bertrand  147: *
                    148: *     .. Scalar Arguments ..
                    149:       INTEGER            L, LDA, M, N
                    150: *     ..
                    151: *     .. Array Arguments ..
                    152:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
                    153: *     ..
                    154: *
                    155: *  =====================================================================
                    156: *
                    157: *     .. Parameters ..
                    158:       DOUBLE PRECISION   ZERO
                    159:       PARAMETER          ( ZERO = 0.0D+0 )
                    160: *     ..
                    161: *     .. Local Scalars ..
                    162:       INTEGER            I
                    163: *     ..
                    164: *     .. External Subroutines ..
1.5       bertrand  165:       EXTERNAL           DLARFG, DLARZ
1.1       bertrand  166: *     ..
                    167: *     .. Executable Statements ..
                    168: *
                    169: *     Test the input arguments
                    170: *
                    171: *     Quick return if possible
                    172: *
                    173:       IF( M.EQ.0 ) THEN
                    174:          RETURN
                    175:       ELSE IF( M.EQ.N ) THEN
                    176:          DO 10 I = 1, N
                    177:             TAU( I ) = ZERO
                    178:    10    CONTINUE
                    179:          RETURN
                    180:       END IF
                    181: *
                    182:       DO 20 I = M, 1, -1
                    183: *
                    184: *        Generate elementary reflector H(i) to annihilate
                    185: *        [ A(i,i) A(i,n-l+1:n) ]
                    186: *
1.5       bertrand  187:          CALL DLARFG( L+1, A( I, I ), A( I, N-L+1 ), LDA, TAU( I ) )
1.1       bertrand  188: *
                    189: *        Apply H(i) to A(1:i-1,i:n) from the right
                    190: *
                    191:          CALL DLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
                    192:      $               TAU( I ), A( 1, I ), LDA, WORK )
                    193: *
                    194:    20 CONTINUE
                    195: *
                    196:       RETURN
                    197: *
                    198: *     End of DLATRZ
                    199: *
                    200:       END

CVSweb interface <joel.bertrand@systella.fr>