File:  [local] / rpl / lapack / lapack / dlatrs.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:00 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLATRS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
   22: *                          CNORM, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   26: *       INTEGER            INFO, LDA, N
   27: *       DOUBLE PRECISION   SCALE
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   A( LDA, * ), CNORM( * ), X( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLATRS solves one of the triangular systems
   40: *>
   41: *>    A *x = s*b  or  A**T *x = s*b
   42: *>
   43: *> with scaling to prevent overflow.  Here A is an upper or lower
   44: *> triangular matrix, A**T denotes the transpose of A, x and b are
   45: *> n-element vectors, and s is a scaling factor, usually less than
   46: *> or equal to 1, chosen so that the components of x will be less than
   47: *> the overflow threshold.  If the unscaled problem will not cause
   48: *> overflow, the Level 2 BLAS routine DTRSV is called.  If the matrix A
   49: *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
   50: *> non-trivial solution to A*x = 0 is returned.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] UPLO
   57: *> \verbatim
   58: *>          UPLO is CHARACTER*1
   59: *>          Specifies whether the matrix A is upper or lower triangular.
   60: *>          = 'U':  Upper triangular
   61: *>          = 'L':  Lower triangular
   62: *> \endverbatim
   63: *>
   64: *> \param[in] TRANS
   65: *> \verbatim
   66: *>          TRANS is CHARACTER*1
   67: *>          Specifies the operation applied to A.
   68: *>          = 'N':  Solve A * x = s*b  (No transpose)
   69: *>          = 'T':  Solve A**T* x = s*b  (Transpose)
   70: *>          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose)
   71: *> \endverbatim
   72: *>
   73: *> \param[in] DIAG
   74: *> \verbatim
   75: *>          DIAG is CHARACTER*1
   76: *>          Specifies whether or not the matrix A is unit triangular.
   77: *>          = 'N':  Non-unit triangular
   78: *>          = 'U':  Unit triangular
   79: *> \endverbatim
   80: *>
   81: *> \param[in] NORMIN
   82: *> \verbatim
   83: *>          NORMIN is CHARACTER*1
   84: *>          Specifies whether CNORM has been set or not.
   85: *>          = 'Y':  CNORM contains the column norms on entry
   86: *>          = 'N':  CNORM is not set on entry.  On exit, the norms will
   87: *>                  be computed and stored in CNORM.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] N
   91: *> \verbatim
   92: *>          N is INTEGER
   93: *>          The order of the matrix A.  N >= 0.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] A
   97: *> \verbatim
   98: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   99: *>          The triangular matrix A.  If UPLO = 'U', the leading n by n
  100: *>          upper triangular part of the array A contains the upper
  101: *>          triangular matrix, and the strictly lower triangular part of
  102: *>          A is not referenced.  If UPLO = 'L', the leading n by n lower
  103: *>          triangular part of the array A contains the lower triangular
  104: *>          matrix, and the strictly upper triangular part of A is not
  105: *>          referenced.  If DIAG = 'U', the diagonal elements of A are
  106: *>          also not referenced and are assumed to be 1.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] LDA
  110: *> \verbatim
  111: *>          LDA is INTEGER
  112: *>          The leading dimension of the array A.  LDA >= max (1,N).
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] X
  116: *> \verbatim
  117: *>          X is DOUBLE PRECISION array, dimension (N)
  118: *>          On entry, the right hand side b of the triangular system.
  119: *>          On exit, X is overwritten by the solution vector x.
  120: *> \endverbatim
  121: *>
  122: *> \param[out] SCALE
  123: *> \verbatim
  124: *>          SCALE is DOUBLE PRECISION
  125: *>          The scaling factor s for the triangular system
  126: *>             A * x = s*b  or  A**T* x = s*b.
  127: *>          If SCALE = 0, the matrix A is singular or badly scaled, and
  128: *>          the vector x is an exact or approximate solution to A*x = 0.
  129: *> \endverbatim
  130: *>
  131: *> \param[in,out] CNORM
  132: *> \verbatim
  133: *>          CNORM is DOUBLE PRECISION array, dimension (N)
  134: *>
  135: *>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  136: *>          contains the norm of the off-diagonal part of the j-th column
  137: *>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
  138: *>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  139: *>          must be greater than or equal to the 1-norm.
  140: *>
  141: *>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  142: *>          returns the 1-norm of the offdiagonal part of the j-th column
  143: *>          of A.
  144: *> \endverbatim
  145: *>
  146: *> \param[out] INFO
  147: *> \verbatim
  148: *>          INFO is INTEGER
  149: *>          = 0:  successful exit
  150: *>          < 0:  if INFO = -k, the k-th argument had an illegal value
  151: *> \endverbatim
  152: *
  153: *  Authors:
  154: *  ========
  155: *
  156: *> \author Univ. of Tennessee
  157: *> \author Univ. of California Berkeley
  158: *> \author Univ. of Colorado Denver
  159: *> \author NAG Ltd.
  160: *
  161: *> \ingroup doubleOTHERauxiliary
  162: *
  163: *> \par Further Details:
  164: *  =====================
  165: *>
  166: *> \verbatim
  167: *>
  168: *>  A rough bound on x is computed; if that is less than overflow, DTRSV
  169: *>  is called, otherwise, specific code is used which checks for possible
  170: *>  overflow or divide-by-zero at every operation.
  171: *>
  172: *>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  173: *>  if A is lower triangular is
  174: *>
  175: *>       x[1:n] := b[1:n]
  176: *>       for j = 1, ..., n
  177: *>            x(j) := x(j) / A(j,j)
  178: *>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  179: *>       end
  180: *>
  181: *>  Define bounds on the components of x after j iterations of the loop:
  182: *>     M(j) = bound on x[1:j]
  183: *>     G(j) = bound on x[j+1:n]
  184: *>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  185: *>
  186: *>  Then for iteration j+1 we have
  187: *>     M(j+1) <= G(j) / | A(j+1,j+1) |
  188: *>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  189: *>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  190: *>
  191: *>  where CNORM(j+1) is greater than or equal to the infinity-norm of
  192: *>  column j+1 of A, not counting the diagonal.  Hence
  193: *>
  194: *>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  195: *>                  1<=i<=j
  196: *>  and
  197: *>
  198: *>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  199: *>                                   1<=i< j
  200: *>
  201: *>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
  202: *>  reciprocal of the largest M(j), j=1,..,n, is larger than
  203: *>  max(underflow, 1/overflow).
  204: *>
  205: *>  The bound on x(j) is also used to determine when a step in the
  206: *>  columnwise method can be performed without fear of overflow.  If
  207: *>  the computed bound is greater than a large constant, x is scaled to
  208: *>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  209: *>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  210: *>
  211: *>  Similarly, a row-wise scheme is used to solve A**T*x = b.  The basic
  212: *>  algorithm for A upper triangular is
  213: *>
  214: *>       for j = 1, ..., n
  215: *>            x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
  216: *>       end
  217: *>
  218: *>  We simultaneously compute two bounds
  219: *>       G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
  220: *>       M(j) = bound on x(i), 1<=i<=j
  221: *>
  222: *>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  223: *>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  224: *>  Then the bound on x(j) is
  225: *>
  226: *>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  227: *>
  228: *>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  229: *>                      1<=i<=j
  230: *>
  231: *>  and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
  232: *>  than max(underflow, 1/overflow).
  233: *> \endverbatim
  234: *>
  235: *  =====================================================================
  236:       SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  237:      $                   CNORM, INFO )
  238: *
  239: *  -- LAPACK auxiliary routine --
  240: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  241: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  242: *
  243: *     .. Scalar Arguments ..
  244:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
  245:       INTEGER            INFO, LDA, N
  246:       DOUBLE PRECISION   SCALE
  247: *     ..
  248: *     .. Array Arguments ..
  249:       DOUBLE PRECISION   A( LDA, * ), CNORM( * ), X( * )
  250: *     ..
  251: *
  252: *  =====================================================================
  253: *
  254: *     .. Parameters ..
  255:       DOUBLE PRECISION   ZERO, HALF, ONE
  256:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  257: *     ..
  258: *     .. Local Scalars ..
  259:       LOGICAL            NOTRAN, NOUNIT, UPPER
  260:       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
  261:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  262:      $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  263: *     ..
  264: *     .. External Functions ..
  265:       LOGICAL            LSAME
  266:       INTEGER            IDAMAX
  267:       DOUBLE PRECISION   DASUM, DDOT, DLAMCH, DLANGE
  268:       EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH, DLANGE
  269: *     ..
  270: *     .. External Subroutines ..
  271:       EXTERNAL           DAXPY, DSCAL, DTRSV, XERBLA
  272: *     ..
  273: *     .. Intrinsic Functions ..
  274:       INTRINSIC          ABS, MAX, MIN
  275: *     ..
  276: *     .. Executable Statements ..
  277: *
  278:       INFO = 0
  279:       UPPER = LSAME( UPLO, 'U' )
  280:       NOTRAN = LSAME( TRANS, 'N' )
  281:       NOUNIT = LSAME( DIAG, 'N' )
  282: *
  283: *     Test the input parameters.
  284: *
  285:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  286:          INFO = -1
  287:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  288:      $         LSAME( TRANS, 'C' ) ) THEN
  289:          INFO = -2
  290:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  291:          INFO = -3
  292:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  293:      $         LSAME( NORMIN, 'N' ) ) THEN
  294:          INFO = -4
  295:       ELSE IF( N.LT.0 ) THEN
  296:          INFO = -5
  297:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  298:          INFO = -7
  299:       END IF
  300:       IF( INFO.NE.0 ) THEN
  301:          CALL XERBLA( 'DLATRS', -INFO )
  302:          RETURN
  303:       END IF
  304: *
  305: *     Quick return if possible
  306: *
  307:       SCALE = ONE
  308:       IF( N.EQ.0 )
  309:      $   RETURN
  310: *
  311: *     Determine machine dependent parameters to control overflow.
  312: *
  313:       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  314:       BIGNUM = ONE / SMLNUM
  315: *
  316:       IF( LSAME( NORMIN, 'N' ) ) THEN
  317: *
  318: *        Compute the 1-norm of each column, not including the diagonal.
  319: *
  320:          IF( UPPER ) THEN
  321: *
  322: *           A is upper triangular.
  323: *
  324:             DO 10 J = 1, N
  325:                CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
  326:    10       CONTINUE
  327:          ELSE
  328: *
  329: *           A is lower triangular.
  330: *
  331:             DO 20 J = 1, N - 1
  332:                CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
  333:    20       CONTINUE
  334:             CNORM( N ) = ZERO
  335:          END IF
  336:       END IF
  337: *
  338: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  339: *     greater than BIGNUM.
  340: *
  341:       IMAX = IDAMAX( N, CNORM, 1 )
  342:       TMAX = CNORM( IMAX )
  343:       IF( TMAX.LE.BIGNUM ) THEN
  344:          TSCAL = ONE
  345:       ELSE
  346: *
  347: *        Avoid NaN generation if entries in CNORM exceed the
  348: *        overflow threshold
  349: *
  350:          IF( TMAX.LE.DLAMCH('Overflow') ) THEN
  351: *           Case 1: All entries in CNORM are valid floating-point numbers
  352:             TSCAL = ONE / ( SMLNUM*TMAX )
  353:             CALL DSCAL( N, TSCAL, CNORM, 1 )
  354:          ELSE
  355: *           Case 2: At least one column norm of A cannot be represented
  356: *           as floating-point number. Find the offdiagonal entry A( I, J )
  357: *           with the largest absolute value. If this entry is not +/- Infinity,
  358: *           use this value as TSCAL.
  359:             TMAX = ZERO
  360:             IF( UPPER ) THEN
  361: *
  362: *              A is upper triangular.
  363: *
  364:                DO J = 2, N
  365:                   TMAX = MAX( DLANGE( 'M', J-1, 1, A( 1, J ), 1, SUMJ ),
  366:      $                        TMAX )
  367:                END DO
  368:             ELSE
  369: *
  370: *              A is lower triangular.
  371: *
  372:                DO J = 1, N - 1
  373:                   TMAX = MAX( DLANGE( 'M', N-J, 1, A( J+1, J ), 1,
  374:      $                        SUMJ ), TMAX )
  375:                END DO
  376:             END IF
  377: *
  378:             IF( TMAX.LE.DLAMCH('Overflow') ) THEN
  379:                TSCAL = ONE / ( SMLNUM*TMAX )
  380:                DO J = 1, N
  381:                   IF( CNORM( J ).LE.DLAMCH('Overflow') ) THEN
  382:                      CNORM( J ) = CNORM( J )*TSCAL
  383:                   ELSE
  384: *                    Recompute the 1-norm without introducing Infinity
  385: *                    in the summation
  386:                      CNORM( J ) = ZERO
  387:                      IF( UPPER ) THEN
  388:                         DO I = 1, J - 1
  389:                            CNORM( J ) = CNORM( J ) +
  390:      $                                  TSCAL * ABS( A( I, J ) )
  391:                         END DO
  392:                      ELSE
  393:                         DO I = J + 1, N
  394:                            CNORM( J ) = CNORM( J ) +
  395:      $                                  TSCAL * ABS( A( I, J ) )
  396:                         END DO
  397:                      END IF
  398:                   END IF
  399:                END DO
  400:             ELSE
  401: *              At least one entry of A is not a valid floating-point entry.
  402: *              Rely on TRSV to propagate Inf and NaN.
  403:                CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
  404:                RETURN
  405:             END IF
  406:          END IF
  407:       END IF
  408: *
  409: *     Compute a bound on the computed solution vector to see if the
  410: *     Level 2 BLAS routine DTRSV can be used.
  411: *
  412:       J = IDAMAX( N, X, 1 )
  413:       XMAX = ABS( X( J ) )
  414:       XBND = XMAX
  415:       IF( NOTRAN ) THEN
  416: *
  417: *        Compute the growth in A * x = b.
  418: *
  419:          IF( UPPER ) THEN
  420:             JFIRST = N
  421:             JLAST = 1
  422:             JINC = -1
  423:          ELSE
  424:             JFIRST = 1
  425:             JLAST = N
  426:             JINC = 1
  427:          END IF
  428: *
  429:          IF( TSCAL.NE.ONE ) THEN
  430:             GROW = ZERO
  431:             GO TO 50
  432:          END IF
  433: *
  434:          IF( NOUNIT ) THEN
  435: *
  436: *           A is non-unit triangular.
  437: *
  438: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  439: *           Initially, G(0) = max{x(i), i=1,...,n}.
  440: *
  441:             GROW = ONE / MAX( XBND, SMLNUM )
  442:             XBND = GROW
  443:             DO 30 J = JFIRST, JLAST, JINC
  444: *
  445: *              Exit the loop if the growth factor is too small.
  446: *
  447:                IF( GROW.LE.SMLNUM )
  448:      $            GO TO 50
  449: *
  450: *              M(j) = G(j-1) / abs(A(j,j))
  451: *
  452:                TJJ = ABS( A( J, J ) )
  453:                XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  454:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  455: *
  456: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  457: *
  458:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  459:                ELSE
  460: *
  461: *                 G(j) could overflow, set GROW to 0.
  462: *
  463:                   GROW = ZERO
  464:                END IF
  465:    30       CONTINUE
  466:             GROW = XBND
  467:          ELSE
  468: *
  469: *           A is unit triangular.
  470: *
  471: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  472: *
  473:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  474:             DO 40 J = JFIRST, JLAST, JINC
  475: *
  476: *              Exit the loop if the growth factor is too small.
  477: *
  478:                IF( GROW.LE.SMLNUM )
  479:      $            GO TO 50
  480: *
  481: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  482: *
  483:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  484:    40       CONTINUE
  485:          END IF
  486:    50    CONTINUE
  487: *
  488:       ELSE
  489: *
  490: *        Compute the growth in A**T * x = b.
  491: *
  492:          IF( UPPER ) THEN
  493:             JFIRST = 1
  494:             JLAST = N
  495:             JINC = 1
  496:          ELSE
  497:             JFIRST = N
  498:             JLAST = 1
  499:             JINC = -1
  500:          END IF
  501: *
  502:          IF( TSCAL.NE.ONE ) THEN
  503:             GROW = ZERO
  504:             GO TO 80
  505:          END IF
  506: *
  507:          IF( NOUNIT ) THEN
  508: *
  509: *           A is non-unit triangular.
  510: *
  511: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  512: *           Initially, M(0) = max{x(i), i=1,...,n}.
  513: *
  514:             GROW = ONE / MAX( XBND, SMLNUM )
  515:             XBND = GROW
  516:             DO 60 J = JFIRST, JLAST, JINC
  517: *
  518: *              Exit the loop if the growth factor is too small.
  519: *
  520:                IF( GROW.LE.SMLNUM )
  521:      $            GO TO 80
  522: *
  523: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  524: *
  525:                XJ = ONE + CNORM( J )
  526:                GROW = MIN( GROW, XBND / XJ )
  527: *
  528: *              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  529: *
  530:                TJJ = ABS( A( J, J ) )
  531:                IF( XJ.GT.TJJ )
  532:      $            XBND = XBND*( TJJ / XJ )
  533:    60       CONTINUE
  534:             GROW = MIN( GROW, XBND )
  535:          ELSE
  536: *
  537: *           A is unit triangular.
  538: *
  539: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  540: *
  541:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  542:             DO 70 J = JFIRST, JLAST, JINC
  543: *
  544: *              Exit the loop if the growth factor is too small.
  545: *
  546:                IF( GROW.LE.SMLNUM )
  547:      $            GO TO 80
  548: *
  549: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  550: *
  551:                XJ = ONE + CNORM( J )
  552:                GROW = GROW / XJ
  553:    70       CONTINUE
  554:          END IF
  555:    80    CONTINUE
  556:       END IF
  557: *
  558:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  559: *
  560: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  561: *        elements of X is not too small.
  562: *
  563:          CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
  564:       ELSE
  565: *
  566: *        Use a Level 1 BLAS solve, scaling intermediate results.
  567: *
  568:          IF( XMAX.GT.BIGNUM ) THEN
  569: *
  570: *           Scale X so that its components are less than or equal to
  571: *           BIGNUM in absolute value.
  572: *
  573:             SCALE = BIGNUM / XMAX
  574:             CALL DSCAL( N, SCALE, X, 1 )
  575:             XMAX = BIGNUM
  576:          END IF
  577: *
  578:          IF( NOTRAN ) THEN
  579: *
  580: *           Solve A * x = b
  581: *
  582:             DO 110 J = JFIRST, JLAST, JINC
  583: *
  584: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  585: *
  586:                XJ = ABS( X( J ) )
  587:                IF( NOUNIT ) THEN
  588:                   TJJS = A( J, J )*TSCAL
  589:                ELSE
  590:                   TJJS = TSCAL
  591:                   IF( TSCAL.EQ.ONE )
  592:      $               GO TO 100
  593:                END IF
  594:                TJJ = ABS( TJJS )
  595:                IF( TJJ.GT.SMLNUM ) THEN
  596: *
  597: *                    abs(A(j,j)) > SMLNUM:
  598: *
  599:                   IF( TJJ.LT.ONE ) THEN
  600:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  601: *
  602: *                          Scale x by 1/b(j).
  603: *
  604:                         REC = ONE / XJ
  605:                         CALL DSCAL( N, REC, X, 1 )
  606:                         SCALE = SCALE*REC
  607:                         XMAX = XMAX*REC
  608:                      END IF
  609:                   END IF
  610:                   X( J ) = X( J ) / TJJS
  611:                   XJ = ABS( X( J ) )
  612:                ELSE IF( TJJ.GT.ZERO ) THEN
  613: *
  614: *                    0 < abs(A(j,j)) <= SMLNUM:
  615: *
  616:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  617: *
  618: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  619: *                       to avoid overflow when dividing by A(j,j).
  620: *
  621:                      REC = ( TJJ*BIGNUM ) / XJ
  622:                      IF( CNORM( J ).GT.ONE ) THEN
  623: *
  624: *                          Scale by 1/CNORM(j) to avoid overflow when
  625: *                          multiplying x(j) times column j.
  626: *
  627:                         REC = REC / CNORM( J )
  628:                      END IF
  629:                      CALL DSCAL( N, REC, X, 1 )
  630:                      SCALE = SCALE*REC
  631:                      XMAX = XMAX*REC
  632:                   END IF
  633:                   X( J ) = X( J ) / TJJS
  634:                   XJ = ABS( X( J ) )
  635:                ELSE
  636: *
  637: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  638: *                    scale = 0, and compute a solution to A*x = 0.
  639: *
  640:                   DO 90 I = 1, N
  641:                      X( I ) = ZERO
  642:    90             CONTINUE
  643:                   X( J ) = ONE
  644:                   XJ = ONE
  645:                   SCALE = ZERO
  646:                   XMAX = ZERO
  647:                END IF
  648:   100          CONTINUE
  649: *
  650: *              Scale x if necessary to avoid overflow when adding a
  651: *              multiple of column j of A.
  652: *
  653:                IF( XJ.GT.ONE ) THEN
  654:                   REC = ONE / XJ
  655:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  656: *
  657: *                    Scale x by 1/(2*abs(x(j))).
  658: *
  659:                      REC = REC*HALF
  660:                      CALL DSCAL( N, REC, X, 1 )
  661:                      SCALE = SCALE*REC
  662:                   END IF
  663:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  664: *
  665: *                 Scale x by 1/2.
  666: *
  667:                   CALL DSCAL( N, HALF, X, 1 )
  668:                   SCALE = SCALE*HALF
  669:                END IF
  670: *
  671:                IF( UPPER ) THEN
  672:                   IF( J.GT.1 ) THEN
  673: *
  674: *                    Compute the update
  675: *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  676: *
  677:                      CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
  678:      $                           1 )
  679:                      I = IDAMAX( J-1, X, 1 )
  680:                      XMAX = ABS( X( I ) )
  681:                   END IF
  682:                ELSE
  683:                   IF( J.LT.N ) THEN
  684: *
  685: *                    Compute the update
  686: *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  687: *
  688:                      CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
  689:      $                           X( J+1 ), 1 )
  690:                      I = J + IDAMAX( N-J, X( J+1 ), 1 )
  691:                      XMAX = ABS( X( I ) )
  692:                   END IF
  693:                END IF
  694:   110       CONTINUE
  695: *
  696:          ELSE
  697: *
  698: *           Solve A**T * x = b
  699: *
  700:             DO 160 J = JFIRST, JLAST, JINC
  701: *
  702: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  703: *                                    k<>j
  704: *
  705:                XJ = ABS( X( J ) )
  706:                USCAL = TSCAL
  707:                REC = ONE / MAX( XMAX, ONE )
  708:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  709: *
  710: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  711: *
  712:                   REC = REC*HALF
  713:                   IF( NOUNIT ) THEN
  714:                      TJJS = A( J, J )*TSCAL
  715:                   ELSE
  716:                      TJJS = TSCAL
  717:                   END IF
  718:                   TJJ = ABS( TJJS )
  719:                   IF( TJJ.GT.ONE ) THEN
  720: *
  721: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  722: *
  723:                      REC = MIN( ONE, REC*TJJ )
  724:                      USCAL = USCAL / TJJS
  725:                   END IF
  726:                   IF( REC.LT.ONE ) THEN
  727:                      CALL DSCAL( N, REC, X, 1 )
  728:                      SCALE = SCALE*REC
  729:                      XMAX = XMAX*REC
  730:                   END IF
  731:                END IF
  732: *
  733:                SUMJ = ZERO
  734:                IF( USCAL.EQ.ONE ) THEN
  735: *
  736: *                 If the scaling needed for A in the dot product is 1,
  737: *                 call DDOT to perform the dot product.
  738: *
  739:                   IF( UPPER ) THEN
  740:                      SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
  741:                   ELSE IF( J.LT.N ) THEN
  742:                      SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  743:                   END IF
  744:                ELSE
  745: *
  746: *                 Otherwise, use in-line code for the dot product.
  747: *
  748:                   IF( UPPER ) THEN
  749:                      DO 120 I = 1, J - 1
  750:                         SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
  751:   120                CONTINUE
  752:                   ELSE IF( J.LT.N ) THEN
  753:                      DO 130 I = J + 1, N
  754:                         SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
  755:   130                CONTINUE
  756:                   END IF
  757:                END IF
  758: *
  759:                IF( USCAL.EQ.TSCAL ) THEN
  760: *
  761: *                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  762: *                 was not used to scale the dotproduct.
  763: *
  764:                   X( J ) = X( J ) - SUMJ
  765:                   XJ = ABS( X( J ) )
  766:                   IF( NOUNIT ) THEN
  767:                      TJJS = A( J, J )*TSCAL
  768:                   ELSE
  769:                      TJJS = TSCAL
  770:                      IF( TSCAL.EQ.ONE )
  771:      $                  GO TO 150
  772:                   END IF
  773: *
  774: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  775: *
  776:                   TJJ = ABS( TJJS )
  777:                   IF( TJJ.GT.SMLNUM ) THEN
  778: *
  779: *                       abs(A(j,j)) > SMLNUM:
  780: *
  781:                      IF( TJJ.LT.ONE ) THEN
  782:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  783: *
  784: *                             Scale X by 1/abs(x(j)).
  785: *
  786:                            REC = ONE / XJ
  787:                            CALL DSCAL( N, REC, X, 1 )
  788:                            SCALE = SCALE*REC
  789:                            XMAX = XMAX*REC
  790:                         END IF
  791:                      END IF
  792:                      X( J ) = X( J ) / TJJS
  793:                   ELSE IF( TJJ.GT.ZERO ) THEN
  794: *
  795: *                       0 < abs(A(j,j)) <= SMLNUM:
  796: *
  797:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  798: *
  799: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  800: *
  801:                         REC = ( TJJ*BIGNUM ) / XJ
  802:                         CALL DSCAL( N, REC, X, 1 )
  803:                         SCALE = SCALE*REC
  804:                         XMAX = XMAX*REC
  805:                      END IF
  806:                      X( J ) = X( J ) / TJJS
  807:                   ELSE
  808: *
  809: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  810: *                       scale = 0, and compute a solution to A**T*x = 0.
  811: *
  812:                      DO 140 I = 1, N
  813:                         X( I ) = ZERO
  814:   140                CONTINUE
  815:                      X( J ) = ONE
  816:                      SCALE = ZERO
  817:                      XMAX = ZERO
  818:                   END IF
  819:   150             CONTINUE
  820:                ELSE
  821: *
  822: *                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
  823: *                 product has already been divided by 1/A(j,j).
  824: *
  825:                   X( J ) = X( J ) / TJJS - SUMJ
  826:                END IF
  827:                XMAX = MAX( XMAX, ABS( X( J ) ) )
  828:   160       CONTINUE
  829:          END IF
  830:          SCALE = SCALE / TSCAL
  831:       END IF
  832: *
  833: *     Scale the column norms by 1/TSCAL for return.
  834: *
  835:       IF( TSCAL.NE.ONE ) THEN
  836:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  837:       END IF
  838: *
  839:       RETURN
  840: *
  841: *     End of DLATRS
  842: *
  843:       END

CVSweb interface <joel.bertrand@systella.fr>