File:  [local] / rpl / lapack / lapack / dlatrs.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Tue Jul 31 11:06:36 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour du répertoire tools et de la bibliothèque lapack.

    1: *> \brief \b DLATRS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLATRS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrs.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrs.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrs.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
   22: *                          CNORM, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   26: *       INTEGER            INFO, LDA, N
   27: *       DOUBLE PRECISION   SCALE
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   A( LDA, * ), CNORM( * ), X( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLATRS solves one of the triangular systems
   40: *>
   41: *>    A *x = s*b  or  A**T *x = s*b
   42: *>
   43: *> with scaling to prevent overflow.  Here A is an upper or lower
   44: *> triangular matrix, A**T denotes the transpose of A, x and b are
   45: *> n-element vectors, and s is a scaling factor, usually less than
   46: *> or equal to 1, chosen so that the components of x will be less than
   47: *> the overflow threshold.  If the unscaled problem will not cause
   48: *> overflow, the Level 2 BLAS routine DTRSV is called.  If the matrix A
   49: *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
   50: *> non-trivial solution to A*x = 0 is returned.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] UPLO
   57: *> \verbatim
   58: *>          UPLO is CHARACTER*1
   59: *>          Specifies whether the matrix A is upper or lower triangular.
   60: *>          = 'U':  Upper triangular
   61: *>          = 'L':  Lower triangular
   62: *> \endverbatim
   63: *>
   64: *> \param[in] TRANS
   65: *> \verbatim
   66: *>          TRANS is CHARACTER*1
   67: *>          Specifies the operation applied to A.
   68: *>          = 'N':  Solve A * x = s*b  (No transpose)
   69: *>          = 'T':  Solve A**T* x = s*b  (Transpose)
   70: *>          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose)
   71: *> \endverbatim
   72: *>
   73: *> \param[in] DIAG
   74: *> \verbatim
   75: *>          DIAG is CHARACTER*1
   76: *>          Specifies whether or not the matrix A is unit triangular.
   77: *>          = 'N':  Non-unit triangular
   78: *>          = 'U':  Unit triangular
   79: *> \endverbatim
   80: *>
   81: *> \param[in] NORMIN
   82: *> \verbatim
   83: *>          NORMIN is CHARACTER*1
   84: *>          Specifies whether CNORM has been set or not.
   85: *>          = 'Y':  CNORM contains the column norms on entry
   86: *>          = 'N':  CNORM is not set on entry.  On exit, the norms will
   87: *>                  be computed and stored in CNORM.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] N
   91: *> \verbatim
   92: *>          N is INTEGER
   93: *>          The order of the matrix A.  N >= 0.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] A
   97: *> \verbatim
   98: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   99: *>          The triangular matrix A.  If UPLO = 'U', the leading n by n
  100: *>          upper triangular part of the array A contains the upper
  101: *>          triangular matrix, and the strictly lower triangular part of
  102: *>          A is not referenced.  If UPLO = 'L', the leading n by n lower
  103: *>          triangular part of the array A contains the lower triangular
  104: *>          matrix, and the strictly upper triangular part of A is not
  105: *>          referenced.  If DIAG = 'U', the diagonal elements of A are
  106: *>          also not referenced and are assumed to be 1.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] LDA
  110: *> \verbatim
  111: *>          LDA is INTEGER
  112: *>          The leading dimension of the array A.  LDA >= max (1,N).
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] X
  116: *> \verbatim
  117: *>          X is DOUBLE PRECISION array, dimension (N)
  118: *>          On entry, the right hand side b of the triangular system.
  119: *>          On exit, X is overwritten by the solution vector x.
  120: *> \endverbatim
  121: *>
  122: *> \param[out] SCALE
  123: *> \verbatim
  124: *>          SCALE is DOUBLE PRECISION
  125: *>          The scaling factor s for the triangular system
  126: *>             A * x = s*b  or  A**T* x = s*b.
  127: *>          If SCALE = 0, the matrix A is singular or badly scaled, and
  128: *>          the vector x is an exact or approximate solution to A*x = 0.
  129: *> \endverbatim
  130: *>
  131: *> \param[in,out] CNORM
  132: *> \verbatim
  133: *>          CNORM is DOUBLE PRECISION array, dimension (N)
  134: *>
  135: *>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  136: *>          contains the norm of the off-diagonal part of the j-th column
  137: *>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
  138: *>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  139: *>          must be greater than or equal to the 1-norm.
  140: *>
  141: *>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  142: *>          returns the 1-norm of the offdiagonal part of the j-th column
  143: *>          of A.
  144: *> \endverbatim
  145: *>
  146: *> \param[out] INFO
  147: *> \verbatim
  148: *>          INFO is INTEGER
  149: *>          = 0:  successful exit
  150: *>          < 0:  if INFO = -k, the k-th argument had an illegal value
  151: *> \endverbatim
  152: *
  153: *  Authors:
  154: *  ========
  155: *
  156: *> \author Univ. of Tennessee 
  157: *> \author Univ. of California Berkeley 
  158: *> \author Univ. of Colorado Denver 
  159: *> \author NAG Ltd. 
  160: *
  161: *> \date April 2012
  162: *
  163: *> \ingroup doubleOTHERauxiliary
  164: *
  165: *> \par Further Details:
  166: *  =====================
  167: *>
  168: *> \verbatim
  169: *>
  170: *>  A rough bound on x is computed; if that is less than overflow, DTRSV
  171: *>  is called, otherwise, specific code is used which checks for possible
  172: *>  overflow or divide-by-zero at every operation.
  173: *>
  174: *>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  175: *>  if A is lower triangular is
  176: *>
  177: *>       x[1:n] := b[1:n]
  178: *>       for j = 1, ..., n
  179: *>            x(j) := x(j) / A(j,j)
  180: *>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  181: *>       end
  182: *>
  183: *>  Define bounds on the components of x after j iterations of the loop:
  184: *>     M(j) = bound on x[1:j]
  185: *>     G(j) = bound on x[j+1:n]
  186: *>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  187: *>
  188: *>  Then for iteration j+1 we have
  189: *>     M(j+1) <= G(j) / | A(j+1,j+1) |
  190: *>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  191: *>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  192: *>
  193: *>  where CNORM(j+1) is greater than or equal to the infinity-norm of
  194: *>  column j+1 of A, not counting the diagonal.  Hence
  195: *>
  196: *>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  197: *>                  1<=i<=j
  198: *>  and
  199: *>
  200: *>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  201: *>                                   1<=i< j
  202: *>
  203: *>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
  204: *>  reciprocal of the largest M(j), j=1,..,n, is larger than
  205: *>  max(underflow, 1/overflow).
  206: *>
  207: *>  The bound on x(j) is also used to determine when a step in the
  208: *>  columnwise method can be performed without fear of overflow.  If
  209: *>  the computed bound is greater than a large constant, x is scaled to
  210: *>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  211: *>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  212: *>
  213: *>  Similarly, a row-wise scheme is used to solve A**T*x = b.  The basic
  214: *>  algorithm for A upper triangular is
  215: *>
  216: *>       for j = 1, ..., n
  217: *>            x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
  218: *>       end
  219: *>
  220: *>  We simultaneously compute two bounds
  221: *>       G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
  222: *>       M(j) = bound on x(i), 1<=i<=j
  223: *>
  224: *>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  225: *>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  226: *>  Then the bound on x(j) is
  227: *>
  228: *>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  229: *>
  230: *>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  231: *>                      1<=i<=j
  232: *>
  233: *>  and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
  234: *>  than max(underflow, 1/overflow).
  235: *> \endverbatim
  236: *>
  237: *  =====================================================================
  238:       SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  239:      $                   CNORM, INFO )
  240: *
  241: *  -- LAPACK auxiliary routine (version 3.4.1) --
  242: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  243: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  244: *     April 2012
  245: *
  246: *     .. Scalar Arguments ..
  247:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
  248:       INTEGER            INFO, LDA, N
  249:       DOUBLE PRECISION   SCALE
  250: *     ..
  251: *     .. Array Arguments ..
  252:       DOUBLE PRECISION   A( LDA, * ), CNORM( * ), X( * )
  253: *     ..
  254: *
  255: *  =====================================================================
  256: *
  257: *     .. Parameters ..
  258:       DOUBLE PRECISION   ZERO, HALF, ONE
  259:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  260: *     ..
  261: *     .. Local Scalars ..
  262:       LOGICAL            NOTRAN, NOUNIT, UPPER
  263:       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
  264:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  265:      $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  266: *     ..
  267: *     .. External Functions ..
  268:       LOGICAL            LSAME
  269:       INTEGER            IDAMAX
  270:       DOUBLE PRECISION   DASUM, DDOT, DLAMCH
  271:       EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
  272: *     ..
  273: *     .. External Subroutines ..
  274:       EXTERNAL           DAXPY, DSCAL, DTRSV, XERBLA
  275: *     ..
  276: *     .. Intrinsic Functions ..
  277:       INTRINSIC          ABS, MAX, MIN
  278: *     ..
  279: *     .. Executable Statements ..
  280: *
  281:       INFO = 0
  282:       UPPER = LSAME( UPLO, 'U' )
  283:       NOTRAN = LSAME( TRANS, 'N' )
  284:       NOUNIT = LSAME( DIAG, 'N' )
  285: *
  286: *     Test the input parameters.
  287: *
  288:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  289:          INFO = -1
  290:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  291:      $         LSAME( TRANS, 'C' ) ) THEN
  292:          INFO = -2
  293:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  294:          INFO = -3
  295:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  296:      $         LSAME( NORMIN, 'N' ) ) THEN
  297:          INFO = -4
  298:       ELSE IF( N.LT.0 ) THEN
  299:          INFO = -5
  300:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  301:          INFO = -7
  302:       END IF
  303:       IF( INFO.NE.0 ) THEN
  304:          CALL XERBLA( 'DLATRS', -INFO )
  305:          RETURN
  306:       END IF
  307: *
  308: *     Quick return if possible
  309: *
  310:       IF( N.EQ.0 )
  311:      $   RETURN
  312: *
  313: *     Determine machine dependent parameters to control overflow.
  314: *
  315:       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  316:       BIGNUM = ONE / SMLNUM
  317:       SCALE = ONE
  318: *
  319:       IF( LSAME( NORMIN, 'N' ) ) THEN
  320: *
  321: *        Compute the 1-norm of each column, not including the diagonal.
  322: *
  323:          IF( UPPER ) THEN
  324: *
  325: *           A is upper triangular.
  326: *
  327:             DO 10 J = 1, N
  328:                CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
  329:    10       CONTINUE
  330:          ELSE
  331: *
  332: *           A is lower triangular.
  333: *
  334:             DO 20 J = 1, N - 1
  335:                CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
  336:    20       CONTINUE
  337:             CNORM( N ) = ZERO
  338:          END IF
  339:       END IF
  340: *
  341: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  342: *     greater than BIGNUM.
  343: *
  344:       IMAX = IDAMAX( N, CNORM, 1 )
  345:       TMAX = CNORM( IMAX )
  346:       IF( TMAX.LE.BIGNUM ) THEN
  347:          TSCAL = ONE
  348:       ELSE
  349:          TSCAL = ONE / ( SMLNUM*TMAX )
  350:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  351:       END IF
  352: *
  353: *     Compute a bound on the computed solution vector to see if the
  354: *     Level 2 BLAS routine DTRSV can be used.
  355: *
  356:       J = IDAMAX( N, X, 1 )
  357:       XMAX = ABS( X( J ) )
  358:       XBND = XMAX
  359:       IF( NOTRAN ) THEN
  360: *
  361: *        Compute the growth in A * x = b.
  362: *
  363:          IF( UPPER ) THEN
  364:             JFIRST = N
  365:             JLAST = 1
  366:             JINC = -1
  367:          ELSE
  368:             JFIRST = 1
  369:             JLAST = N
  370:             JINC = 1
  371:          END IF
  372: *
  373:          IF( TSCAL.NE.ONE ) THEN
  374:             GROW = ZERO
  375:             GO TO 50
  376:          END IF
  377: *
  378:          IF( NOUNIT ) THEN
  379: *
  380: *           A is non-unit triangular.
  381: *
  382: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  383: *           Initially, G(0) = max{x(i), i=1,...,n}.
  384: *
  385:             GROW = ONE / MAX( XBND, SMLNUM )
  386:             XBND = GROW
  387:             DO 30 J = JFIRST, JLAST, JINC
  388: *
  389: *              Exit the loop if the growth factor is too small.
  390: *
  391:                IF( GROW.LE.SMLNUM )
  392:      $            GO TO 50
  393: *
  394: *              M(j) = G(j-1) / abs(A(j,j))
  395: *
  396:                TJJ = ABS( A( J, J ) )
  397:                XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  398:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  399: *
  400: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  401: *
  402:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  403:                ELSE
  404: *
  405: *                 G(j) could overflow, set GROW to 0.
  406: *
  407:                   GROW = ZERO
  408:                END IF
  409:    30       CONTINUE
  410:             GROW = XBND
  411:          ELSE
  412: *
  413: *           A is unit triangular.
  414: *
  415: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  416: *
  417:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  418:             DO 40 J = JFIRST, JLAST, JINC
  419: *
  420: *              Exit the loop if the growth factor is too small.
  421: *
  422:                IF( GROW.LE.SMLNUM )
  423:      $            GO TO 50
  424: *
  425: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  426: *
  427:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  428:    40       CONTINUE
  429:          END IF
  430:    50    CONTINUE
  431: *
  432:       ELSE
  433: *
  434: *        Compute the growth in A**T * x = b.
  435: *
  436:          IF( UPPER ) THEN
  437:             JFIRST = 1
  438:             JLAST = N
  439:             JINC = 1
  440:          ELSE
  441:             JFIRST = N
  442:             JLAST = 1
  443:             JINC = -1
  444:          END IF
  445: *
  446:          IF( TSCAL.NE.ONE ) THEN
  447:             GROW = ZERO
  448:             GO TO 80
  449:          END IF
  450: *
  451:          IF( NOUNIT ) THEN
  452: *
  453: *           A is non-unit triangular.
  454: *
  455: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  456: *           Initially, M(0) = max{x(i), i=1,...,n}.
  457: *
  458:             GROW = ONE / MAX( XBND, SMLNUM )
  459:             XBND = GROW
  460:             DO 60 J = JFIRST, JLAST, JINC
  461: *
  462: *              Exit the loop if the growth factor is too small.
  463: *
  464:                IF( GROW.LE.SMLNUM )
  465:      $            GO TO 80
  466: *
  467: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  468: *
  469:                XJ = ONE + CNORM( J )
  470:                GROW = MIN( GROW, XBND / XJ )
  471: *
  472: *              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  473: *
  474:                TJJ = ABS( A( J, J ) )
  475:                IF( XJ.GT.TJJ )
  476:      $            XBND = XBND*( TJJ / XJ )
  477:    60       CONTINUE
  478:             GROW = MIN( GROW, XBND )
  479:          ELSE
  480: *
  481: *           A is unit triangular.
  482: *
  483: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  484: *
  485:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  486:             DO 70 J = JFIRST, JLAST, JINC
  487: *
  488: *              Exit the loop if the growth factor is too small.
  489: *
  490:                IF( GROW.LE.SMLNUM )
  491:      $            GO TO 80
  492: *
  493: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  494: *
  495:                XJ = ONE + CNORM( J )
  496:                GROW = GROW / XJ
  497:    70       CONTINUE
  498:          END IF
  499:    80    CONTINUE
  500:       END IF
  501: *
  502:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  503: *
  504: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  505: *        elements of X is not too small.
  506: *
  507:          CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
  508:       ELSE
  509: *
  510: *        Use a Level 1 BLAS solve, scaling intermediate results.
  511: *
  512:          IF( XMAX.GT.BIGNUM ) THEN
  513: *
  514: *           Scale X so that its components are less than or equal to
  515: *           BIGNUM in absolute value.
  516: *
  517:             SCALE = BIGNUM / XMAX
  518:             CALL DSCAL( N, SCALE, X, 1 )
  519:             XMAX = BIGNUM
  520:          END IF
  521: *
  522:          IF( NOTRAN ) THEN
  523: *
  524: *           Solve A * x = b
  525: *
  526:             DO 110 J = JFIRST, JLAST, JINC
  527: *
  528: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  529: *
  530:                XJ = ABS( X( J ) )
  531:                IF( NOUNIT ) THEN
  532:                   TJJS = A( J, J )*TSCAL
  533:                ELSE
  534:                   TJJS = TSCAL
  535:                   IF( TSCAL.EQ.ONE )
  536:      $               GO TO 100
  537:                END IF
  538:                TJJ = ABS( TJJS )
  539:                IF( TJJ.GT.SMLNUM ) THEN
  540: *
  541: *                    abs(A(j,j)) > SMLNUM:
  542: *
  543:                   IF( TJJ.LT.ONE ) THEN
  544:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  545: *
  546: *                          Scale x by 1/b(j).
  547: *
  548:                         REC = ONE / XJ
  549:                         CALL DSCAL( N, REC, X, 1 )
  550:                         SCALE = SCALE*REC
  551:                         XMAX = XMAX*REC
  552:                      END IF
  553:                   END IF
  554:                   X( J ) = X( J ) / TJJS
  555:                   XJ = ABS( X( J ) )
  556:                ELSE IF( TJJ.GT.ZERO ) THEN
  557: *
  558: *                    0 < abs(A(j,j)) <= SMLNUM:
  559: *
  560:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  561: *
  562: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  563: *                       to avoid overflow when dividing by A(j,j).
  564: *
  565:                      REC = ( TJJ*BIGNUM ) / XJ
  566:                      IF( CNORM( J ).GT.ONE ) THEN
  567: *
  568: *                          Scale by 1/CNORM(j) to avoid overflow when
  569: *                          multiplying x(j) times column j.
  570: *
  571:                         REC = REC / CNORM( J )
  572:                      END IF
  573:                      CALL DSCAL( N, REC, X, 1 )
  574:                      SCALE = SCALE*REC
  575:                      XMAX = XMAX*REC
  576:                   END IF
  577:                   X( J ) = X( J ) / TJJS
  578:                   XJ = ABS( X( J ) )
  579:                ELSE
  580: *
  581: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  582: *                    scale = 0, and compute a solution to A*x = 0.
  583: *
  584:                   DO 90 I = 1, N
  585:                      X( I ) = ZERO
  586:    90             CONTINUE
  587:                   X( J ) = ONE
  588:                   XJ = ONE
  589:                   SCALE = ZERO
  590:                   XMAX = ZERO
  591:                END IF
  592:   100          CONTINUE
  593: *
  594: *              Scale x if necessary to avoid overflow when adding a
  595: *              multiple of column j of A.
  596: *
  597:                IF( XJ.GT.ONE ) THEN
  598:                   REC = ONE / XJ
  599:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  600: *
  601: *                    Scale x by 1/(2*abs(x(j))).
  602: *
  603:                      REC = REC*HALF
  604:                      CALL DSCAL( N, REC, X, 1 )
  605:                      SCALE = SCALE*REC
  606:                   END IF
  607:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  608: *
  609: *                 Scale x by 1/2.
  610: *
  611:                   CALL DSCAL( N, HALF, X, 1 )
  612:                   SCALE = SCALE*HALF
  613:                END IF
  614: *
  615:                IF( UPPER ) THEN
  616:                   IF( J.GT.1 ) THEN
  617: *
  618: *                    Compute the update
  619: *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  620: *
  621:                      CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
  622:      $                           1 )
  623:                      I = IDAMAX( J-1, X, 1 )
  624:                      XMAX = ABS( X( I ) )
  625:                   END IF
  626:                ELSE
  627:                   IF( J.LT.N ) THEN
  628: *
  629: *                    Compute the update
  630: *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  631: *
  632:                      CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
  633:      $                           X( J+1 ), 1 )
  634:                      I = J + IDAMAX( N-J, X( J+1 ), 1 )
  635:                      XMAX = ABS( X( I ) )
  636:                   END IF
  637:                END IF
  638:   110       CONTINUE
  639: *
  640:          ELSE
  641: *
  642: *           Solve A**T * x = b
  643: *
  644:             DO 160 J = JFIRST, JLAST, JINC
  645: *
  646: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  647: *                                    k<>j
  648: *
  649:                XJ = ABS( X( J ) )
  650:                USCAL = TSCAL
  651:                REC = ONE / MAX( XMAX, ONE )
  652:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  653: *
  654: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  655: *
  656:                   REC = REC*HALF
  657:                   IF( NOUNIT ) THEN
  658:                      TJJS = A( J, J )*TSCAL
  659:                   ELSE
  660:                      TJJS = TSCAL
  661:                   END IF
  662:                   TJJ = ABS( TJJS )
  663:                   IF( TJJ.GT.ONE ) THEN
  664: *
  665: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  666: *
  667:                      REC = MIN( ONE, REC*TJJ )
  668:                      USCAL = USCAL / TJJS
  669:                   END IF
  670:                   IF( REC.LT.ONE ) THEN
  671:                      CALL DSCAL( N, REC, X, 1 )
  672:                      SCALE = SCALE*REC
  673:                      XMAX = XMAX*REC
  674:                   END IF
  675:                END IF
  676: *
  677:                SUMJ = ZERO
  678:                IF( USCAL.EQ.ONE ) THEN
  679: *
  680: *                 If the scaling needed for A in the dot product is 1,
  681: *                 call DDOT to perform the dot product.
  682: *
  683:                   IF( UPPER ) THEN
  684:                      SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
  685:                   ELSE IF( J.LT.N ) THEN
  686:                      SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  687:                   END IF
  688:                ELSE
  689: *
  690: *                 Otherwise, use in-line code for the dot product.
  691: *
  692:                   IF( UPPER ) THEN
  693:                      DO 120 I = 1, J - 1
  694:                         SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
  695:   120                CONTINUE
  696:                   ELSE IF( J.LT.N ) THEN
  697:                      DO 130 I = J + 1, N
  698:                         SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
  699:   130                CONTINUE
  700:                   END IF
  701:                END IF
  702: *
  703:                IF( USCAL.EQ.TSCAL ) THEN
  704: *
  705: *                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  706: *                 was not used to scale the dotproduct.
  707: *
  708:                   X( J ) = X( J ) - SUMJ
  709:                   XJ = ABS( X( J ) )
  710:                   IF( NOUNIT ) THEN
  711:                      TJJS = A( J, J )*TSCAL
  712:                   ELSE
  713:                      TJJS = TSCAL
  714:                      IF( TSCAL.EQ.ONE )
  715:      $                  GO TO 150
  716:                   END IF
  717: *
  718: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  719: *
  720:                   TJJ = ABS( TJJS )
  721:                   IF( TJJ.GT.SMLNUM ) THEN
  722: *
  723: *                       abs(A(j,j)) > SMLNUM:
  724: *
  725:                      IF( TJJ.LT.ONE ) THEN
  726:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  727: *
  728: *                             Scale X by 1/abs(x(j)).
  729: *
  730:                            REC = ONE / XJ
  731:                            CALL DSCAL( N, REC, X, 1 )
  732:                            SCALE = SCALE*REC
  733:                            XMAX = XMAX*REC
  734:                         END IF
  735:                      END IF
  736:                      X( J ) = X( J ) / TJJS
  737:                   ELSE IF( TJJ.GT.ZERO ) THEN
  738: *
  739: *                       0 < abs(A(j,j)) <= SMLNUM:
  740: *
  741:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  742: *
  743: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  744: *
  745:                         REC = ( TJJ*BIGNUM ) / XJ
  746:                         CALL DSCAL( N, REC, X, 1 )
  747:                         SCALE = SCALE*REC
  748:                         XMAX = XMAX*REC
  749:                      END IF
  750:                      X( J ) = X( J ) / TJJS
  751:                   ELSE
  752: *
  753: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  754: *                       scale = 0, and compute a solution to A**T*x = 0.
  755: *
  756:                      DO 140 I = 1, N
  757:                         X( I ) = ZERO
  758:   140                CONTINUE
  759:                      X( J ) = ONE
  760:                      SCALE = ZERO
  761:                      XMAX = ZERO
  762:                   END IF
  763:   150             CONTINUE
  764:                ELSE
  765: *
  766: *                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
  767: *                 product has already been divided by 1/A(j,j).
  768: *
  769:                   X( J ) = X( J ) / TJJS - SUMJ
  770:                END IF
  771:                XMAX = MAX( XMAX, ABS( X( J ) ) )
  772:   160       CONTINUE
  773:          END IF
  774:          SCALE = SCALE / TSCAL
  775:       END IF
  776: *
  777: *     Scale the column norms by 1/TSCAL for return.
  778: *
  779:       IF( TSCAL.NE.ONE ) THEN
  780:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  781:       END IF
  782: *
  783:       RETURN
  784: *
  785: *     End of DLATRS
  786: *
  787:       END

CVSweb interface <joel.bertrand@systella.fr>