File:  [local] / rpl / lapack / lapack / dlatrs.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
    2:      $                   CNORM, INFO )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   11:       INTEGER            INFO, LDA, N
   12:       DOUBLE PRECISION   SCALE
   13: *     ..
   14: *     .. Array Arguments ..
   15:       DOUBLE PRECISION   A( LDA, * ), CNORM( * ), X( * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DLATRS solves one of the triangular systems
   22: *
   23: *     A *x = s*b  or  A'*x = s*b
   24: *
   25: *  with scaling to prevent overflow.  Here A is an upper or lower
   26: *  triangular matrix, A' denotes the transpose of A, x and b are
   27: *  n-element vectors, and s is a scaling factor, usually less than
   28: *  or equal to 1, chosen so that the components of x will be less than
   29: *  the overflow threshold.  If the unscaled problem will not cause
   30: *  overflow, the Level 2 BLAS routine DTRSV is called.  If the matrix A
   31: *  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
   32: *  non-trivial solution to A*x = 0 is returned.
   33: *
   34: *  Arguments
   35: *  =========
   36: *
   37: *  UPLO    (input) CHARACTER*1
   38: *          Specifies whether the matrix A is upper or lower triangular.
   39: *          = 'U':  Upper triangular
   40: *          = 'L':  Lower triangular
   41: *
   42: *  TRANS   (input) CHARACTER*1
   43: *          Specifies the operation applied to A.
   44: *          = 'N':  Solve A * x = s*b  (No transpose)
   45: *          = 'T':  Solve A'* x = s*b  (Transpose)
   46: *          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose)
   47: *
   48: *  DIAG    (input) CHARACTER*1
   49: *          Specifies whether or not the matrix A is unit triangular.
   50: *          = 'N':  Non-unit triangular
   51: *          = 'U':  Unit triangular
   52: *
   53: *  NORMIN  (input) CHARACTER*1
   54: *          Specifies whether CNORM has been set or not.
   55: *          = 'Y':  CNORM contains the column norms on entry
   56: *          = 'N':  CNORM is not set on entry.  On exit, the norms will
   57: *                  be computed and stored in CNORM.
   58: *
   59: *  N       (input) INTEGER
   60: *          The order of the matrix A.  N >= 0.
   61: *
   62: *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
   63: *          The triangular matrix A.  If UPLO = 'U', the leading n by n
   64: *          upper triangular part of the array A contains the upper
   65: *          triangular matrix, and the strictly lower triangular part of
   66: *          A is not referenced.  If UPLO = 'L', the leading n by n lower
   67: *          triangular part of the array A contains the lower triangular
   68: *          matrix, and the strictly upper triangular part of A is not
   69: *          referenced.  If DIAG = 'U', the diagonal elements of A are
   70: *          also not referenced and are assumed to be 1.
   71: *
   72: *  LDA     (input) INTEGER
   73: *          The leading dimension of the array A.  LDA >= max (1,N).
   74: *
   75: *  X       (input/output) DOUBLE PRECISION array, dimension (N)
   76: *          On entry, the right hand side b of the triangular system.
   77: *          On exit, X is overwritten by the solution vector x.
   78: *
   79: *  SCALE   (output) DOUBLE PRECISION
   80: *          The scaling factor s for the triangular system
   81: *             A * x = s*b  or  A'* x = s*b.
   82: *          If SCALE = 0, the matrix A is singular or badly scaled, and
   83: *          the vector x is an exact or approximate solution to A*x = 0.
   84: *
   85: *  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
   86: *
   87: *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
   88: *          contains the norm of the off-diagonal part of the j-th column
   89: *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
   90: *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
   91: *          must be greater than or equal to the 1-norm.
   92: *
   93: *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
   94: *          returns the 1-norm of the offdiagonal part of the j-th column
   95: *          of A.
   96: *
   97: *  INFO    (output) INTEGER
   98: *          = 0:  successful exit
   99: *          < 0:  if INFO = -k, the k-th argument had an illegal value
  100: *
  101: *  Further Details
  102: *  ======= =======
  103: *
  104: *  A rough bound on x is computed; if that is less than overflow, DTRSV
  105: *  is called, otherwise, specific code is used which checks for possible
  106: *  overflow or divide-by-zero at every operation.
  107: *
  108: *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  109: *  if A is lower triangular is
  110: *
  111: *       x[1:n] := b[1:n]
  112: *       for j = 1, ..., n
  113: *            x(j) := x(j) / A(j,j)
  114: *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  115: *       end
  116: *
  117: *  Define bounds on the components of x after j iterations of the loop:
  118: *     M(j) = bound on x[1:j]
  119: *     G(j) = bound on x[j+1:n]
  120: *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  121: *
  122: *  Then for iteration j+1 we have
  123: *     M(j+1) <= G(j) / | A(j+1,j+1) |
  124: *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  125: *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  126: *
  127: *  where CNORM(j+1) is greater than or equal to the infinity-norm of
  128: *  column j+1 of A, not counting the diagonal.  Hence
  129: *
  130: *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  131: *                  1<=i<=j
  132: *  and
  133: *
  134: *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  135: *                                   1<=i< j
  136: *
  137: *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
  138: *  reciprocal of the largest M(j), j=1,..,n, is larger than
  139: *  max(underflow, 1/overflow).
  140: *
  141: *  The bound on x(j) is also used to determine when a step in the
  142: *  columnwise method can be performed without fear of overflow.  If
  143: *  the computed bound is greater than a large constant, x is scaled to
  144: *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  145: *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  146: *
  147: *  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic
  148: *  algorithm for A upper triangular is
  149: *
  150: *       for j = 1, ..., n
  151: *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  152: *       end
  153: *
  154: *  We simultaneously compute two bounds
  155: *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  156: *       M(j) = bound on x(i), 1<=i<=j
  157: *
  158: *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  159: *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  160: *  Then the bound on x(j) is
  161: *
  162: *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  163: *
  164: *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  165: *                      1<=i<=j
  166: *
  167: *  and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
  168: *  than max(underflow, 1/overflow).
  169: *
  170: *  =====================================================================
  171: *
  172: *     .. Parameters ..
  173:       DOUBLE PRECISION   ZERO, HALF, ONE
  174:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  175: *     ..
  176: *     .. Local Scalars ..
  177:       LOGICAL            NOTRAN, NOUNIT, UPPER
  178:       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
  179:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  180:      $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  181: *     ..
  182: *     .. External Functions ..
  183:       LOGICAL            LSAME
  184:       INTEGER            IDAMAX
  185:       DOUBLE PRECISION   DASUM, DDOT, DLAMCH
  186:       EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
  187: *     ..
  188: *     .. External Subroutines ..
  189:       EXTERNAL           DAXPY, DSCAL, DTRSV, XERBLA
  190: *     ..
  191: *     .. Intrinsic Functions ..
  192:       INTRINSIC          ABS, MAX, MIN
  193: *     ..
  194: *     .. Executable Statements ..
  195: *
  196:       INFO = 0
  197:       UPPER = LSAME( UPLO, 'U' )
  198:       NOTRAN = LSAME( TRANS, 'N' )
  199:       NOUNIT = LSAME( DIAG, 'N' )
  200: *
  201: *     Test the input parameters.
  202: *
  203:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  204:          INFO = -1
  205:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  206:      $         LSAME( TRANS, 'C' ) ) THEN
  207:          INFO = -2
  208:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  209:          INFO = -3
  210:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  211:      $         LSAME( NORMIN, 'N' ) ) THEN
  212:          INFO = -4
  213:       ELSE IF( N.LT.0 ) THEN
  214:          INFO = -5
  215:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  216:          INFO = -7
  217:       END IF
  218:       IF( INFO.NE.0 ) THEN
  219:          CALL XERBLA( 'DLATRS', -INFO )
  220:          RETURN
  221:       END IF
  222: *
  223: *     Quick return if possible
  224: *
  225:       IF( N.EQ.0 )
  226:      $   RETURN
  227: *
  228: *     Determine machine dependent parameters to control overflow.
  229: *
  230:       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  231:       BIGNUM = ONE / SMLNUM
  232:       SCALE = ONE
  233: *
  234:       IF( LSAME( NORMIN, 'N' ) ) THEN
  235: *
  236: *        Compute the 1-norm of each column, not including the diagonal.
  237: *
  238:          IF( UPPER ) THEN
  239: *
  240: *           A is upper triangular.
  241: *
  242:             DO 10 J = 1, N
  243:                CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
  244:    10       CONTINUE
  245:          ELSE
  246: *
  247: *           A is lower triangular.
  248: *
  249:             DO 20 J = 1, N - 1
  250:                CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
  251:    20       CONTINUE
  252:             CNORM( N ) = ZERO
  253:          END IF
  254:       END IF
  255: *
  256: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  257: *     greater than BIGNUM.
  258: *
  259:       IMAX = IDAMAX( N, CNORM, 1 )
  260:       TMAX = CNORM( IMAX )
  261:       IF( TMAX.LE.BIGNUM ) THEN
  262:          TSCAL = ONE
  263:       ELSE
  264:          TSCAL = ONE / ( SMLNUM*TMAX )
  265:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  266:       END IF
  267: *
  268: *     Compute a bound on the computed solution vector to see if the
  269: *     Level 2 BLAS routine DTRSV can be used.
  270: *
  271:       J = IDAMAX( N, X, 1 )
  272:       XMAX = ABS( X( J ) )
  273:       XBND = XMAX
  274:       IF( NOTRAN ) THEN
  275: *
  276: *        Compute the growth in A * x = b.
  277: *
  278:          IF( UPPER ) THEN
  279:             JFIRST = N
  280:             JLAST = 1
  281:             JINC = -1
  282:          ELSE
  283:             JFIRST = 1
  284:             JLAST = N
  285:             JINC = 1
  286:          END IF
  287: *
  288:          IF( TSCAL.NE.ONE ) THEN
  289:             GROW = ZERO
  290:             GO TO 50
  291:          END IF
  292: *
  293:          IF( NOUNIT ) THEN
  294: *
  295: *           A is non-unit triangular.
  296: *
  297: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  298: *           Initially, G(0) = max{x(i), i=1,...,n}.
  299: *
  300:             GROW = ONE / MAX( XBND, SMLNUM )
  301:             XBND = GROW
  302:             DO 30 J = JFIRST, JLAST, JINC
  303: *
  304: *              Exit the loop if the growth factor is too small.
  305: *
  306:                IF( GROW.LE.SMLNUM )
  307:      $            GO TO 50
  308: *
  309: *              M(j) = G(j-1) / abs(A(j,j))
  310: *
  311:                TJJ = ABS( A( J, J ) )
  312:                XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  313:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  314: *
  315: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  316: *
  317:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  318:                ELSE
  319: *
  320: *                 G(j) could overflow, set GROW to 0.
  321: *
  322:                   GROW = ZERO
  323:                END IF
  324:    30       CONTINUE
  325:             GROW = XBND
  326:          ELSE
  327: *
  328: *           A is unit triangular.
  329: *
  330: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  331: *
  332:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  333:             DO 40 J = JFIRST, JLAST, JINC
  334: *
  335: *              Exit the loop if the growth factor is too small.
  336: *
  337:                IF( GROW.LE.SMLNUM )
  338:      $            GO TO 50
  339: *
  340: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  341: *
  342:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  343:    40       CONTINUE
  344:          END IF
  345:    50    CONTINUE
  346: *
  347:       ELSE
  348: *
  349: *        Compute the growth in A' * x = b.
  350: *
  351:          IF( UPPER ) THEN
  352:             JFIRST = 1
  353:             JLAST = N
  354:             JINC = 1
  355:          ELSE
  356:             JFIRST = N
  357:             JLAST = 1
  358:             JINC = -1
  359:          END IF
  360: *
  361:          IF( TSCAL.NE.ONE ) THEN
  362:             GROW = ZERO
  363:             GO TO 80
  364:          END IF
  365: *
  366:          IF( NOUNIT ) THEN
  367: *
  368: *           A is non-unit triangular.
  369: *
  370: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  371: *           Initially, M(0) = max{x(i), i=1,...,n}.
  372: *
  373:             GROW = ONE / MAX( XBND, SMLNUM )
  374:             XBND = GROW
  375:             DO 60 J = JFIRST, JLAST, JINC
  376: *
  377: *              Exit the loop if the growth factor is too small.
  378: *
  379:                IF( GROW.LE.SMLNUM )
  380:      $            GO TO 80
  381: *
  382: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  383: *
  384:                XJ = ONE + CNORM( J )
  385:                GROW = MIN( GROW, XBND / XJ )
  386: *
  387: *              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  388: *
  389:                TJJ = ABS( A( J, J ) )
  390:                IF( XJ.GT.TJJ )
  391:      $            XBND = XBND*( TJJ / XJ )
  392:    60       CONTINUE
  393:             GROW = MIN( GROW, XBND )
  394:          ELSE
  395: *
  396: *           A is unit triangular.
  397: *
  398: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  399: *
  400:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  401:             DO 70 J = JFIRST, JLAST, JINC
  402: *
  403: *              Exit the loop if the growth factor is too small.
  404: *
  405:                IF( GROW.LE.SMLNUM )
  406:      $            GO TO 80
  407: *
  408: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  409: *
  410:                XJ = ONE + CNORM( J )
  411:                GROW = GROW / XJ
  412:    70       CONTINUE
  413:          END IF
  414:    80    CONTINUE
  415:       END IF
  416: *
  417:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  418: *
  419: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  420: *        elements of X is not too small.
  421: *
  422:          CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
  423:       ELSE
  424: *
  425: *        Use a Level 1 BLAS solve, scaling intermediate results.
  426: *
  427:          IF( XMAX.GT.BIGNUM ) THEN
  428: *
  429: *           Scale X so that its components are less than or equal to
  430: *           BIGNUM in absolute value.
  431: *
  432:             SCALE = BIGNUM / XMAX
  433:             CALL DSCAL( N, SCALE, X, 1 )
  434:             XMAX = BIGNUM
  435:          END IF
  436: *
  437:          IF( NOTRAN ) THEN
  438: *
  439: *           Solve A * x = b
  440: *
  441:             DO 110 J = JFIRST, JLAST, JINC
  442: *
  443: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  444: *
  445:                XJ = ABS( X( J ) )
  446:                IF( NOUNIT ) THEN
  447:                   TJJS = A( J, J )*TSCAL
  448:                ELSE
  449:                   TJJS = TSCAL
  450:                   IF( TSCAL.EQ.ONE )
  451:      $               GO TO 100
  452:                END IF
  453:                TJJ = ABS( TJJS )
  454:                IF( TJJ.GT.SMLNUM ) THEN
  455: *
  456: *                    abs(A(j,j)) > SMLNUM:
  457: *
  458:                   IF( TJJ.LT.ONE ) THEN
  459:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  460: *
  461: *                          Scale x by 1/b(j).
  462: *
  463:                         REC = ONE / XJ
  464:                         CALL DSCAL( N, REC, X, 1 )
  465:                         SCALE = SCALE*REC
  466:                         XMAX = XMAX*REC
  467:                      END IF
  468:                   END IF
  469:                   X( J ) = X( J ) / TJJS
  470:                   XJ = ABS( X( J ) )
  471:                ELSE IF( TJJ.GT.ZERO ) THEN
  472: *
  473: *                    0 < abs(A(j,j)) <= SMLNUM:
  474: *
  475:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  476: *
  477: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  478: *                       to avoid overflow when dividing by A(j,j).
  479: *
  480:                      REC = ( TJJ*BIGNUM ) / XJ
  481:                      IF( CNORM( J ).GT.ONE ) THEN
  482: *
  483: *                          Scale by 1/CNORM(j) to avoid overflow when
  484: *                          multiplying x(j) times column j.
  485: *
  486:                         REC = REC / CNORM( J )
  487:                      END IF
  488:                      CALL DSCAL( N, REC, X, 1 )
  489:                      SCALE = SCALE*REC
  490:                      XMAX = XMAX*REC
  491:                   END IF
  492:                   X( J ) = X( J ) / TJJS
  493:                   XJ = ABS( X( J ) )
  494:                ELSE
  495: *
  496: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  497: *                    scale = 0, and compute a solution to A*x = 0.
  498: *
  499:                   DO 90 I = 1, N
  500:                      X( I ) = ZERO
  501:    90             CONTINUE
  502:                   X( J ) = ONE
  503:                   XJ = ONE
  504:                   SCALE = ZERO
  505:                   XMAX = ZERO
  506:                END IF
  507:   100          CONTINUE
  508: *
  509: *              Scale x if necessary to avoid overflow when adding a
  510: *              multiple of column j of A.
  511: *
  512:                IF( XJ.GT.ONE ) THEN
  513:                   REC = ONE / XJ
  514:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  515: *
  516: *                    Scale x by 1/(2*abs(x(j))).
  517: *
  518:                      REC = REC*HALF
  519:                      CALL DSCAL( N, REC, X, 1 )
  520:                      SCALE = SCALE*REC
  521:                   END IF
  522:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  523: *
  524: *                 Scale x by 1/2.
  525: *
  526:                   CALL DSCAL( N, HALF, X, 1 )
  527:                   SCALE = SCALE*HALF
  528:                END IF
  529: *
  530:                IF( UPPER ) THEN
  531:                   IF( J.GT.1 ) THEN
  532: *
  533: *                    Compute the update
  534: *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  535: *
  536:                      CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
  537:      $                           1 )
  538:                      I = IDAMAX( J-1, X, 1 )
  539:                      XMAX = ABS( X( I ) )
  540:                   END IF
  541:                ELSE
  542:                   IF( J.LT.N ) THEN
  543: *
  544: *                    Compute the update
  545: *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  546: *
  547:                      CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
  548:      $                           X( J+1 ), 1 )
  549:                      I = J + IDAMAX( N-J, X( J+1 ), 1 )
  550:                      XMAX = ABS( X( I ) )
  551:                   END IF
  552:                END IF
  553:   110       CONTINUE
  554: *
  555:          ELSE
  556: *
  557: *           Solve A' * x = b
  558: *
  559:             DO 160 J = JFIRST, JLAST, JINC
  560: *
  561: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  562: *                                    k<>j
  563: *
  564:                XJ = ABS( X( J ) )
  565:                USCAL = TSCAL
  566:                REC = ONE / MAX( XMAX, ONE )
  567:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  568: *
  569: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  570: *
  571:                   REC = REC*HALF
  572:                   IF( NOUNIT ) THEN
  573:                      TJJS = A( J, J )*TSCAL
  574:                   ELSE
  575:                      TJJS = TSCAL
  576:                   END IF
  577:                   TJJ = ABS( TJJS )
  578:                   IF( TJJ.GT.ONE ) THEN
  579: *
  580: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  581: *
  582:                      REC = MIN( ONE, REC*TJJ )
  583:                      USCAL = USCAL / TJJS
  584:                   END IF
  585:                   IF( REC.LT.ONE ) THEN
  586:                      CALL DSCAL( N, REC, X, 1 )
  587:                      SCALE = SCALE*REC
  588:                      XMAX = XMAX*REC
  589:                   END IF
  590:                END IF
  591: *
  592:                SUMJ = ZERO
  593:                IF( USCAL.EQ.ONE ) THEN
  594: *
  595: *                 If the scaling needed for A in the dot product is 1,
  596: *                 call DDOT to perform the dot product.
  597: *
  598:                   IF( UPPER ) THEN
  599:                      SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
  600:                   ELSE IF( J.LT.N ) THEN
  601:                      SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  602:                   END IF
  603:                ELSE
  604: *
  605: *                 Otherwise, use in-line code for the dot product.
  606: *
  607:                   IF( UPPER ) THEN
  608:                      DO 120 I = 1, J - 1
  609:                         SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
  610:   120                CONTINUE
  611:                   ELSE IF( J.LT.N ) THEN
  612:                      DO 130 I = J + 1, N
  613:                         SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
  614:   130                CONTINUE
  615:                   END IF
  616:                END IF
  617: *
  618:                IF( USCAL.EQ.TSCAL ) THEN
  619: *
  620: *                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  621: *                 was not used to scale the dotproduct.
  622: *
  623:                   X( J ) = X( J ) - SUMJ
  624:                   XJ = ABS( X( J ) )
  625:                   IF( NOUNIT ) THEN
  626:                      TJJS = A( J, J )*TSCAL
  627:                   ELSE
  628:                      TJJS = TSCAL
  629:                      IF( TSCAL.EQ.ONE )
  630:      $                  GO TO 150
  631:                   END IF
  632: *
  633: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  634: *
  635:                   TJJ = ABS( TJJS )
  636:                   IF( TJJ.GT.SMLNUM ) THEN
  637: *
  638: *                       abs(A(j,j)) > SMLNUM:
  639: *
  640:                      IF( TJJ.LT.ONE ) THEN
  641:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  642: *
  643: *                             Scale X by 1/abs(x(j)).
  644: *
  645:                            REC = ONE / XJ
  646:                            CALL DSCAL( N, REC, X, 1 )
  647:                            SCALE = SCALE*REC
  648:                            XMAX = XMAX*REC
  649:                         END IF
  650:                      END IF
  651:                      X( J ) = X( J ) / TJJS
  652:                   ELSE IF( TJJ.GT.ZERO ) THEN
  653: *
  654: *                       0 < abs(A(j,j)) <= SMLNUM:
  655: *
  656:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  657: *
  658: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  659: *
  660:                         REC = ( TJJ*BIGNUM ) / XJ
  661:                         CALL DSCAL( N, REC, X, 1 )
  662:                         SCALE = SCALE*REC
  663:                         XMAX = XMAX*REC
  664:                      END IF
  665:                      X( J ) = X( J ) / TJJS
  666:                   ELSE
  667: *
  668: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  669: *                       scale = 0, and compute a solution to A'*x = 0.
  670: *
  671:                      DO 140 I = 1, N
  672:                         X( I ) = ZERO
  673:   140                CONTINUE
  674:                      X( J ) = ONE
  675:                      SCALE = ZERO
  676:                      XMAX = ZERO
  677:                   END IF
  678:   150             CONTINUE
  679:                ELSE
  680: *
  681: *                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
  682: *                 product has already been divided by 1/A(j,j).
  683: *
  684:                   X( J ) = X( J ) / TJJS - SUMJ
  685:                END IF
  686:                XMAX = MAX( XMAX, ABS( X( J ) ) )
  687:   160       CONTINUE
  688:          END IF
  689:          SCALE = SCALE / TSCAL
  690:       END IF
  691: *
  692: *     Scale the column norms by 1/TSCAL for return.
  693: *
  694:       IF( TSCAL.NE.ONE ) THEN
  695:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  696:       END IF
  697: *
  698:       RETURN
  699: *
  700: *     End of DLATRS
  701: *
  702:       END

CVSweb interface <joel.bertrand@systella.fr>