File:  [local] / rpl / lapack / lapack / dlatrd.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:42:59 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLATRD
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLATRD + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrd.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrd.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrd.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            LDA, LDW, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DLATRD reduces NB rows and columns of a real symmetric matrix A to
   38: *> symmetric tridiagonal form by an orthogonal similarity
   39: *> transformation Q**T * A * Q, and returns the matrices V and W which are
   40: *> needed to apply the transformation to the unreduced part of A.
   41: *>
   42: *> If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
   43: *> matrix, of which the upper triangle is supplied;
   44: *> if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
   45: *> matrix, of which the lower triangle is supplied.
   46: *>
   47: *> This is an auxiliary routine called by DSYTRD.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          Specifies whether the upper or lower triangular part of the
   57: *>          symmetric matrix A is stored:
   58: *>          = 'U': Upper triangular
   59: *>          = 'L': Lower triangular
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] NB
   69: *> \verbatim
   70: *>          NB is INTEGER
   71: *>          The number of rows and columns to be reduced.
   72: *> \endverbatim
   73: *>
   74: *> \param[in,out] A
   75: *> \verbatim
   76: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   77: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   78: *>          n-by-n upper triangular part of A contains the upper
   79: *>          triangular part of the matrix A, and the strictly lower
   80: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   81: *>          leading n-by-n lower triangular part of A contains the lower
   82: *>          triangular part of the matrix A, and the strictly upper
   83: *>          triangular part of A is not referenced.
   84: *>          On exit:
   85: *>          if UPLO = 'U', the last NB columns have been reduced to
   86: *>            tridiagonal form, with the diagonal elements overwriting
   87: *>            the diagonal elements of A; the elements above the diagonal
   88: *>            with the array TAU, represent the orthogonal matrix Q as a
   89: *>            product of elementary reflectors;
   90: *>          if UPLO = 'L', the first NB columns have been reduced to
   91: *>            tridiagonal form, with the diagonal elements overwriting
   92: *>            the diagonal elements of A; the elements below the diagonal
   93: *>            with the array TAU, represent the  orthogonal matrix Q as a
   94: *>            product of elementary reflectors.
   95: *>          See Further Details.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] LDA
   99: *> \verbatim
  100: *>          LDA is INTEGER
  101: *>          The leading dimension of the array A.  LDA >= (1,N).
  102: *> \endverbatim
  103: *>
  104: *> \param[out] E
  105: *> \verbatim
  106: *>          E is DOUBLE PRECISION array, dimension (N-1)
  107: *>          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
  108: *>          elements of the last NB columns of the reduced matrix;
  109: *>          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
  110: *>          the first NB columns of the reduced matrix.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] TAU
  114: *> \verbatim
  115: *>          TAU is DOUBLE PRECISION array, dimension (N-1)
  116: *>          The scalar factors of the elementary reflectors, stored in
  117: *>          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
  118: *>          See Further Details.
  119: *> \endverbatim
  120: *>
  121: *> \param[out] W
  122: *> \verbatim
  123: *>          W is DOUBLE PRECISION array, dimension (LDW,NB)
  124: *>          The n-by-nb matrix W required to update the unreduced part
  125: *>          of A.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] LDW
  129: *> \verbatim
  130: *>          LDW is INTEGER
  131: *>          The leading dimension of the array W. LDW >= max(1,N).
  132: *> \endverbatim
  133: *
  134: *  Authors:
  135: *  ========
  136: *
  137: *> \author Univ. of Tennessee 
  138: *> \author Univ. of California Berkeley 
  139: *> \author Univ. of Colorado Denver 
  140: *> \author NAG Ltd. 
  141: *
  142: *> \date November 2011
  143: *
  144: *> \ingroup doubleOTHERauxiliary
  145: *
  146: *> \par Further Details:
  147: *  =====================
  148: *>
  149: *> \verbatim
  150: *>
  151: *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
  152: *>  reflectors
  153: *>
  154: *>     Q = H(n) H(n-1) . . . H(n-nb+1).
  155: *>
  156: *>  Each H(i) has the form
  157: *>
  158: *>     H(i) = I - tau * v * v**T
  159: *>
  160: *>  where tau is a real scalar, and v is a real vector with
  161: *>  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
  162: *>  and tau in TAU(i-1).
  163: *>
  164: *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
  165: *>  reflectors
  166: *>
  167: *>     Q = H(1) H(2) . . . H(nb).
  168: *>
  169: *>  Each H(i) has the form
  170: *>
  171: *>     H(i) = I - tau * v * v**T
  172: *>
  173: *>  where tau is a real scalar, and v is a real vector with
  174: *>  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
  175: *>  and tau in TAU(i).
  176: *>
  177: *>  The elements of the vectors v together form the n-by-nb matrix V
  178: *>  which is needed, with W, to apply the transformation to the unreduced
  179: *>  part of the matrix, using a symmetric rank-2k update of the form:
  180: *>  A := A - V*W**T - W*V**T.
  181: *>
  182: *>  The contents of A on exit are illustrated by the following examples
  183: *>  with n = 5 and nb = 2:
  184: *>
  185: *>  if UPLO = 'U':                       if UPLO = 'L':
  186: *>
  187: *>    (  a   a   a   v4  v5 )              (  d                  )
  188: *>    (      a   a   v4  v5 )              (  1   d              )
  189: *>    (          a   1   v5 )              (  v1  1   a          )
  190: *>    (              d   1  )              (  v1  v2  a   a      )
  191: *>    (                  d  )              (  v1  v2  a   a   a  )
  192: *>
  193: *>  where d denotes a diagonal element of the reduced matrix, a denotes
  194: *>  an element of the original matrix that is unchanged, and vi denotes
  195: *>  an element of the vector defining H(i).
  196: *> \endverbatim
  197: *>
  198: *  =====================================================================
  199:       SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
  200: *
  201: *  -- LAPACK auxiliary routine (version 3.4.0) --
  202: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  203: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  204: *     November 2011
  205: *
  206: *     .. Scalar Arguments ..
  207:       CHARACTER          UPLO
  208:       INTEGER            LDA, LDW, N, NB
  209: *     ..
  210: *     .. Array Arguments ..
  211:       DOUBLE PRECISION   A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
  212: *     ..
  213: *
  214: *  =====================================================================
  215: *
  216: *     .. Parameters ..
  217:       DOUBLE PRECISION   ZERO, ONE, HALF
  218:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
  219: *     ..
  220: *     .. Local Scalars ..
  221:       INTEGER            I, IW
  222:       DOUBLE PRECISION   ALPHA
  223: *     ..
  224: *     .. External Subroutines ..
  225:       EXTERNAL           DAXPY, DGEMV, DLARFG, DSCAL, DSYMV
  226: *     ..
  227: *     .. External Functions ..
  228:       LOGICAL            LSAME
  229:       DOUBLE PRECISION   DDOT
  230:       EXTERNAL           LSAME, DDOT
  231: *     ..
  232: *     .. Intrinsic Functions ..
  233:       INTRINSIC          MIN
  234: *     ..
  235: *     .. Executable Statements ..
  236: *
  237: *     Quick return if possible
  238: *
  239:       IF( N.LE.0 )
  240:      $   RETURN
  241: *
  242:       IF( LSAME( UPLO, 'U' ) ) THEN
  243: *
  244: *        Reduce last NB columns of upper triangle
  245: *
  246:          DO 10 I = N, N - NB + 1, -1
  247:             IW = I - N + NB
  248:             IF( I.LT.N ) THEN
  249: *
  250: *              Update A(1:i,i)
  251: *
  252:                CALL DGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
  253:      $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
  254:                CALL DGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
  255:      $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
  256:             END IF
  257:             IF( I.GT.1 ) THEN
  258: *
  259: *              Generate elementary reflector H(i) to annihilate
  260: *              A(1:i-2,i)
  261: *
  262:                CALL DLARFG( I-1, A( I-1, I ), A( 1, I ), 1, TAU( I-1 ) )
  263:                E( I-1 ) = A( I-1, I )
  264:                A( I-1, I ) = ONE
  265: *
  266: *              Compute W(1:i-1,i)
  267: *
  268:                CALL DSYMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
  269:      $                     ZERO, W( 1, IW ), 1 )
  270:                IF( I.LT.N ) THEN
  271:                   CALL DGEMV( 'Transpose', I-1, N-I, ONE, W( 1, IW+1 ),
  272:      $                        LDW, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
  273:                   CALL DGEMV( 'No transpose', I-1, N-I, -ONE,
  274:      $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
  275:      $                        W( 1, IW ), 1 )
  276:                   CALL DGEMV( 'Transpose', I-1, N-I, ONE, A( 1, I+1 ),
  277:      $                        LDA, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
  278:                   CALL DGEMV( 'No transpose', I-1, N-I, -ONE,
  279:      $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
  280:      $                        W( 1, IW ), 1 )
  281:                END IF
  282:                CALL DSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
  283:                ALPHA = -HALF*TAU( I-1 )*DDOT( I-1, W( 1, IW ), 1,
  284:      $                 A( 1, I ), 1 )
  285:                CALL DAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
  286:             END IF
  287: *
  288:    10    CONTINUE
  289:       ELSE
  290: *
  291: *        Reduce first NB columns of lower triangle
  292: *
  293:          DO 20 I = 1, NB
  294: *
  295: *           Update A(i:n,i)
  296: *
  297:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
  298:      $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
  299:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
  300:      $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
  301:             IF( I.LT.N ) THEN
  302: *
  303: *              Generate elementary reflector H(i) to annihilate
  304: *              A(i+2:n,i)
  305: *
  306:                CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
  307:      $                      TAU( I ) )
  308:                E( I ) = A( I+1, I )
  309:                A( I+1, I ) = ONE
  310: *
  311: *              Compute W(i+1:n,i)
  312: *
  313:                CALL DSYMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
  314:      $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
  315:                CALL DGEMV( 'Transpose', N-I, I-1, ONE, W( I+1, 1 ), LDW,
  316:      $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
  317:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
  318:      $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
  319:                CALL DGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
  320:      $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
  321:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
  322:      $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
  323:                CALL DSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
  324:                ALPHA = -HALF*TAU( I )*DDOT( N-I, W( I+1, I ), 1,
  325:      $                 A( I+1, I ), 1 )
  326:                CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
  327:             END IF
  328: *
  329:    20    CONTINUE
  330:       END IF
  331: *
  332:       RETURN
  333: *
  334: *     End of DLATRD
  335: *
  336:       END

CVSweb interface <joel.bertrand@systella.fr>