File:  [local] / rpl / lapack / lapack / dlatrd.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:34 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
    2: *
    3: *  -- LAPACK auxiliary routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            LDA, LDW, N, NB
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
   14: *     ..
   15: *
   16: *  Purpose
   17: *  =======
   18: *
   19: *  DLATRD reduces NB rows and columns of a real symmetric matrix A to
   20: *  symmetric tridiagonal form by an orthogonal similarity
   21: *  transformation Q' * A * Q, and returns the matrices V and W which are
   22: *  needed to apply the transformation to the unreduced part of A.
   23: *
   24: *  If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
   25: *  matrix, of which the upper triangle is supplied;
   26: *  if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
   27: *  matrix, of which the lower triangle is supplied.
   28: *
   29: *  This is an auxiliary routine called by DSYTRD.
   30: *
   31: *  Arguments
   32: *  =========
   33: *
   34: *  UPLO    (input) CHARACTER*1
   35: *          Specifies whether the upper or lower triangular part of the
   36: *          symmetric matrix A is stored:
   37: *          = 'U': Upper triangular
   38: *          = 'L': Lower triangular
   39: *
   40: *  N       (input) INTEGER
   41: *          The order of the matrix A.
   42: *
   43: *  NB      (input) INTEGER
   44: *          The number of rows and columns to be reduced.
   45: *
   46: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   47: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   48: *          n-by-n upper triangular part of A contains the upper
   49: *          triangular part of the matrix A, and the strictly lower
   50: *          triangular part of A is not referenced.  If UPLO = 'L', the
   51: *          leading n-by-n lower triangular part of A contains the lower
   52: *          triangular part of the matrix A, and the strictly upper
   53: *          triangular part of A is not referenced.
   54: *          On exit:
   55: *          if UPLO = 'U', the last NB columns have been reduced to
   56: *            tridiagonal form, with the diagonal elements overwriting
   57: *            the diagonal elements of A; the elements above the diagonal
   58: *            with the array TAU, represent the orthogonal matrix Q as a
   59: *            product of elementary reflectors;
   60: *          if UPLO = 'L', the first NB columns have been reduced to
   61: *            tridiagonal form, with the diagonal elements overwriting
   62: *            the diagonal elements of A; the elements below the diagonal
   63: *            with the array TAU, represent the  orthogonal matrix Q as a
   64: *            product of elementary reflectors.
   65: *          See Further Details.
   66: *
   67: *  LDA     (input) INTEGER
   68: *          The leading dimension of the array A.  LDA >= (1,N).
   69: *
   70: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
   71: *          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
   72: *          elements of the last NB columns of the reduced matrix;
   73: *          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
   74: *          the first NB columns of the reduced matrix.
   75: *
   76: *  TAU     (output) DOUBLE PRECISION array, dimension (N-1)
   77: *          The scalar factors of the elementary reflectors, stored in
   78: *          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
   79: *          See Further Details.
   80: *
   81: *  W       (output) DOUBLE PRECISION array, dimension (LDW,NB)
   82: *          The n-by-nb matrix W required to update the unreduced part
   83: *          of A.
   84: *
   85: *  LDW     (input) INTEGER
   86: *          The leading dimension of the array W. LDW >= max(1,N).
   87: *
   88: *  Further Details
   89: *  ===============
   90: *
   91: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
   92: *  reflectors
   93: *
   94: *     Q = H(n) H(n-1) . . . H(n-nb+1).
   95: *
   96: *  Each H(i) has the form
   97: *
   98: *     H(i) = I - tau * v * v'
   99: *
  100: *  where tau is a real scalar, and v is a real vector with
  101: *  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
  102: *  and tau in TAU(i-1).
  103: *
  104: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
  105: *  reflectors
  106: *
  107: *     Q = H(1) H(2) . . . H(nb).
  108: *
  109: *  Each H(i) has the form
  110: *
  111: *     H(i) = I - tau * v * v'
  112: *
  113: *  where tau is a real scalar, and v is a real vector with
  114: *  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
  115: *  and tau in TAU(i).
  116: *
  117: *  The elements of the vectors v together form the n-by-nb matrix V
  118: *  which is needed, with W, to apply the transformation to the unreduced
  119: *  part of the matrix, using a symmetric rank-2k update of the form:
  120: *  A := A - V*W' - W*V'.
  121: *
  122: *  The contents of A on exit are illustrated by the following examples
  123: *  with n = 5 and nb = 2:
  124: *
  125: *  if UPLO = 'U':                       if UPLO = 'L':
  126: *
  127: *    (  a   a   a   v4  v5 )              (  d                  )
  128: *    (      a   a   v4  v5 )              (  1   d              )
  129: *    (          a   1   v5 )              (  v1  1   a          )
  130: *    (              d   1  )              (  v1  v2  a   a      )
  131: *    (                  d  )              (  v1  v2  a   a   a  )
  132: *
  133: *  where d denotes a diagonal element of the reduced matrix, a denotes
  134: *  an element of the original matrix that is unchanged, and vi denotes
  135: *  an element of the vector defining H(i).
  136: *
  137: *  =====================================================================
  138: *
  139: *     .. Parameters ..
  140:       DOUBLE PRECISION   ZERO, ONE, HALF
  141:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
  142: *     ..
  143: *     .. Local Scalars ..
  144:       INTEGER            I, IW
  145:       DOUBLE PRECISION   ALPHA
  146: *     ..
  147: *     .. External Subroutines ..
  148:       EXTERNAL           DAXPY, DGEMV, DLARFG, DSCAL, DSYMV
  149: *     ..
  150: *     .. External Functions ..
  151:       LOGICAL            LSAME
  152:       DOUBLE PRECISION   DDOT
  153:       EXTERNAL           LSAME, DDOT
  154: *     ..
  155: *     .. Intrinsic Functions ..
  156:       INTRINSIC          MIN
  157: *     ..
  158: *     .. Executable Statements ..
  159: *
  160: *     Quick return if possible
  161: *
  162:       IF( N.LE.0 )
  163:      $   RETURN
  164: *
  165:       IF( LSAME( UPLO, 'U' ) ) THEN
  166: *
  167: *        Reduce last NB columns of upper triangle
  168: *
  169:          DO 10 I = N, N - NB + 1, -1
  170:             IW = I - N + NB
  171:             IF( I.LT.N ) THEN
  172: *
  173: *              Update A(1:i,i)
  174: *
  175:                CALL DGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
  176:      $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
  177:                CALL DGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
  178:      $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
  179:             END IF
  180:             IF( I.GT.1 ) THEN
  181: *
  182: *              Generate elementary reflector H(i) to annihilate
  183: *              A(1:i-2,i)
  184: *
  185:                CALL DLARFG( I-1, A( I-1, I ), A( 1, I ), 1, TAU( I-1 ) )
  186:                E( I-1 ) = A( I-1, I )
  187:                A( I-1, I ) = ONE
  188: *
  189: *              Compute W(1:i-1,i)
  190: *
  191:                CALL DSYMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
  192:      $                     ZERO, W( 1, IW ), 1 )
  193:                IF( I.LT.N ) THEN
  194:                   CALL DGEMV( 'Transpose', I-1, N-I, ONE, W( 1, IW+1 ),
  195:      $                        LDW, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
  196:                   CALL DGEMV( 'No transpose', I-1, N-I, -ONE,
  197:      $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
  198:      $                        W( 1, IW ), 1 )
  199:                   CALL DGEMV( 'Transpose', I-1, N-I, ONE, A( 1, I+1 ),
  200:      $                        LDA, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
  201:                   CALL DGEMV( 'No transpose', I-1, N-I, -ONE,
  202:      $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
  203:      $                        W( 1, IW ), 1 )
  204:                END IF
  205:                CALL DSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
  206:                ALPHA = -HALF*TAU( I-1 )*DDOT( I-1, W( 1, IW ), 1,
  207:      $                 A( 1, I ), 1 )
  208:                CALL DAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
  209:             END IF
  210: *
  211:    10    CONTINUE
  212:       ELSE
  213: *
  214: *        Reduce first NB columns of lower triangle
  215: *
  216:          DO 20 I = 1, NB
  217: *
  218: *           Update A(i:n,i)
  219: *
  220:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
  221:      $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
  222:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
  223:      $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
  224:             IF( I.LT.N ) THEN
  225: *
  226: *              Generate elementary reflector H(i) to annihilate
  227: *              A(i+2:n,i)
  228: *
  229:                CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
  230:      $                      TAU( I ) )
  231:                E( I ) = A( I+1, I )
  232:                A( I+1, I ) = ONE
  233: *
  234: *              Compute W(i+1:n,i)
  235: *
  236:                CALL DSYMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
  237:      $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
  238:                CALL DGEMV( 'Transpose', N-I, I-1, ONE, W( I+1, 1 ), LDW,
  239:      $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
  240:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
  241:      $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
  242:                CALL DGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
  243:      $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
  244:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
  245:      $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
  246:                CALL DSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
  247:                ALPHA = -HALF*TAU( I )*DDOT( N-I, W( I+1, I ), 1,
  248:      $                 A( I+1, I ), 1 )
  249:                CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
  250:             END IF
  251: *
  252:    20    CONTINUE
  253:       END IF
  254: *
  255:       RETURN
  256: *
  257: *     End of DLATRD
  258: *
  259:       END

CVSweb interface <joel.bertrand@systella.fr>