Annotation of rpl/lapack/lapack/dlatrd.f, revision 1.13

1.12      bertrand    1: *> \brief \b DLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal similarity transformation.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLATRD + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrd.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrd.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrd.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            LDA, LDW, N, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
                     29: *       ..
                     30: *  
                     31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DLATRD reduces NB rows and columns of a real symmetric matrix A to
                     38: *> symmetric tridiagonal form by an orthogonal similarity
                     39: *> transformation Q**T * A * Q, and returns the matrices V and W which are
                     40: *> needed to apply the transformation to the unreduced part of A.
                     41: *>
                     42: *> If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
                     43: *> matrix, of which the upper triangle is supplied;
                     44: *> if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
                     45: *> matrix, of which the lower triangle is supplied.
                     46: *>
                     47: *> This is an auxiliary routine called by DSYTRD.
                     48: *> \endverbatim
                     49: *
                     50: *  Arguments:
                     51: *  ==========
                     52: *
                     53: *> \param[in] UPLO
                     54: *> \verbatim
                     55: *>          UPLO is CHARACTER*1
                     56: *>          Specifies whether the upper or lower triangular part of the
                     57: *>          symmetric matrix A is stored:
                     58: *>          = 'U': Upper triangular
                     59: *>          = 'L': Lower triangular
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] N
                     63: *> \verbatim
                     64: *>          N is INTEGER
                     65: *>          The order of the matrix A.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] NB
                     69: *> \verbatim
                     70: *>          NB is INTEGER
                     71: *>          The number of rows and columns to be reduced.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in,out] A
                     75: *> \verbatim
                     76: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     77: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     78: *>          n-by-n upper triangular part of A contains the upper
                     79: *>          triangular part of the matrix A, and the strictly lower
                     80: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     81: *>          leading n-by-n lower triangular part of A contains the lower
                     82: *>          triangular part of the matrix A, and the strictly upper
                     83: *>          triangular part of A is not referenced.
                     84: *>          On exit:
                     85: *>          if UPLO = 'U', the last NB columns have been reduced to
                     86: *>            tridiagonal form, with the diagonal elements overwriting
                     87: *>            the diagonal elements of A; the elements above the diagonal
                     88: *>            with the array TAU, represent the orthogonal matrix Q as a
                     89: *>            product of elementary reflectors;
                     90: *>          if UPLO = 'L', the first NB columns have been reduced to
                     91: *>            tridiagonal form, with the diagonal elements overwriting
                     92: *>            the diagonal elements of A; the elements below the diagonal
                     93: *>            with the array TAU, represent the  orthogonal matrix Q as a
                     94: *>            product of elementary reflectors.
                     95: *>          See Further Details.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] LDA
                     99: *> \verbatim
                    100: *>          LDA is INTEGER
                    101: *>          The leading dimension of the array A.  LDA >= (1,N).
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[out] E
                    105: *> \verbatim
                    106: *>          E is DOUBLE PRECISION array, dimension (N-1)
                    107: *>          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
                    108: *>          elements of the last NB columns of the reduced matrix;
                    109: *>          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
                    110: *>          the first NB columns of the reduced matrix.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[out] TAU
                    114: *> \verbatim
                    115: *>          TAU is DOUBLE PRECISION array, dimension (N-1)
                    116: *>          The scalar factors of the elementary reflectors, stored in
                    117: *>          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
                    118: *>          See Further Details.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[out] W
                    122: *> \verbatim
                    123: *>          W is DOUBLE PRECISION array, dimension (LDW,NB)
                    124: *>          The n-by-nb matrix W required to update the unreduced part
                    125: *>          of A.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] LDW
                    129: *> \verbatim
                    130: *>          LDW is INTEGER
                    131: *>          The leading dimension of the array W. LDW >= max(1,N).
                    132: *> \endverbatim
                    133: *
                    134: *  Authors:
                    135: *  ========
                    136: *
                    137: *> \author Univ. of Tennessee 
                    138: *> \author Univ. of California Berkeley 
                    139: *> \author Univ. of Colorado Denver 
                    140: *> \author NAG Ltd. 
                    141: *
1.12      bertrand  142: *> \date September 2012
1.9       bertrand  143: *
                    144: *> \ingroup doubleOTHERauxiliary
                    145: *
                    146: *> \par Further Details:
                    147: *  =====================
                    148: *>
                    149: *> \verbatim
                    150: *>
                    151: *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
                    152: *>  reflectors
                    153: *>
                    154: *>     Q = H(n) H(n-1) . . . H(n-nb+1).
                    155: *>
                    156: *>  Each H(i) has the form
                    157: *>
                    158: *>     H(i) = I - tau * v * v**T
                    159: *>
                    160: *>  where tau is a real scalar, and v is a real vector with
                    161: *>  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
                    162: *>  and tau in TAU(i-1).
                    163: *>
                    164: *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
                    165: *>  reflectors
                    166: *>
                    167: *>     Q = H(1) H(2) . . . H(nb).
                    168: *>
                    169: *>  Each H(i) has the form
                    170: *>
                    171: *>     H(i) = I - tau * v * v**T
                    172: *>
                    173: *>  where tau is a real scalar, and v is a real vector with
                    174: *>  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
                    175: *>  and tau in TAU(i).
                    176: *>
                    177: *>  The elements of the vectors v together form the n-by-nb matrix V
                    178: *>  which is needed, with W, to apply the transformation to the unreduced
                    179: *>  part of the matrix, using a symmetric rank-2k update of the form:
                    180: *>  A := A - V*W**T - W*V**T.
                    181: *>
                    182: *>  The contents of A on exit are illustrated by the following examples
                    183: *>  with n = 5 and nb = 2:
                    184: *>
                    185: *>  if UPLO = 'U':                       if UPLO = 'L':
                    186: *>
                    187: *>    (  a   a   a   v4  v5 )              (  d                  )
                    188: *>    (      a   a   v4  v5 )              (  1   d              )
                    189: *>    (          a   1   v5 )              (  v1  1   a          )
                    190: *>    (              d   1  )              (  v1  v2  a   a      )
                    191: *>    (                  d  )              (  v1  v2  a   a   a  )
                    192: *>
                    193: *>  where d denotes a diagonal element of the reduced matrix, a denotes
                    194: *>  an element of the original matrix that is unchanged, and vi denotes
                    195: *>  an element of the vector defining H(i).
                    196: *> \endverbatim
                    197: *>
                    198: *  =====================================================================
1.1       bertrand  199:       SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
                    200: *
1.12      bertrand  201: *  -- LAPACK auxiliary routine (version 3.4.2) --
1.1       bertrand  202: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    203: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.12      bertrand  204: *     September 2012
1.1       bertrand  205: *
                    206: *     .. Scalar Arguments ..
                    207:       CHARACTER          UPLO
                    208:       INTEGER            LDA, LDW, N, NB
                    209: *     ..
                    210: *     .. Array Arguments ..
                    211:       DOUBLE PRECISION   A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
                    212: *     ..
                    213: *
                    214: *  =====================================================================
                    215: *
                    216: *     .. Parameters ..
                    217:       DOUBLE PRECISION   ZERO, ONE, HALF
                    218:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
                    219: *     ..
                    220: *     .. Local Scalars ..
                    221:       INTEGER            I, IW
                    222:       DOUBLE PRECISION   ALPHA
                    223: *     ..
                    224: *     .. External Subroutines ..
                    225:       EXTERNAL           DAXPY, DGEMV, DLARFG, DSCAL, DSYMV
                    226: *     ..
                    227: *     .. External Functions ..
                    228:       LOGICAL            LSAME
                    229:       DOUBLE PRECISION   DDOT
                    230:       EXTERNAL           LSAME, DDOT
                    231: *     ..
                    232: *     .. Intrinsic Functions ..
                    233:       INTRINSIC          MIN
                    234: *     ..
                    235: *     .. Executable Statements ..
                    236: *
                    237: *     Quick return if possible
                    238: *
                    239:       IF( N.LE.0 )
                    240:      $   RETURN
                    241: *
                    242:       IF( LSAME( UPLO, 'U' ) ) THEN
                    243: *
                    244: *        Reduce last NB columns of upper triangle
                    245: *
                    246:          DO 10 I = N, N - NB + 1, -1
                    247:             IW = I - N + NB
                    248:             IF( I.LT.N ) THEN
                    249: *
                    250: *              Update A(1:i,i)
                    251: *
                    252:                CALL DGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
                    253:      $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
                    254:                CALL DGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
                    255:      $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
                    256:             END IF
                    257:             IF( I.GT.1 ) THEN
                    258: *
                    259: *              Generate elementary reflector H(i) to annihilate
                    260: *              A(1:i-2,i)
                    261: *
                    262:                CALL DLARFG( I-1, A( I-1, I ), A( 1, I ), 1, TAU( I-1 ) )
                    263:                E( I-1 ) = A( I-1, I )
                    264:                A( I-1, I ) = ONE
                    265: *
                    266: *              Compute W(1:i-1,i)
                    267: *
                    268:                CALL DSYMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
                    269:      $                     ZERO, W( 1, IW ), 1 )
                    270:                IF( I.LT.N ) THEN
                    271:                   CALL DGEMV( 'Transpose', I-1, N-I, ONE, W( 1, IW+1 ),
                    272:      $                        LDW, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
                    273:                   CALL DGEMV( 'No transpose', I-1, N-I, -ONE,
                    274:      $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
                    275:      $                        W( 1, IW ), 1 )
                    276:                   CALL DGEMV( 'Transpose', I-1, N-I, ONE, A( 1, I+1 ),
                    277:      $                        LDA, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
                    278:                   CALL DGEMV( 'No transpose', I-1, N-I, -ONE,
                    279:      $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
                    280:      $                        W( 1, IW ), 1 )
                    281:                END IF
                    282:                CALL DSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
                    283:                ALPHA = -HALF*TAU( I-1 )*DDOT( I-1, W( 1, IW ), 1,
                    284:      $                 A( 1, I ), 1 )
                    285:                CALL DAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
                    286:             END IF
                    287: *
                    288:    10    CONTINUE
                    289:       ELSE
                    290: *
                    291: *        Reduce first NB columns of lower triangle
                    292: *
                    293:          DO 20 I = 1, NB
                    294: *
                    295: *           Update A(i:n,i)
                    296: *
                    297:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
                    298:      $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
                    299:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
                    300:      $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
                    301:             IF( I.LT.N ) THEN
                    302: *
                    303: *              Generate elementary reflector H(i) to annihilate
                    304: *              A(i+2:n,i)
                    305: *
                    306:                CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
                    307:      $                      TAU( I ) )
                    308:                E( I ) = A( I+1, I )
                    309:                A( I+1, I ) = ONE
                    310: *
                    311: *              Compute W(i+1:n,i)
                    312: *
                    313:                CALL DSYMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
                    314:      $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
                    315:                CALL DGEMV( 'Transpose', N-I, I-1, ONE, W( I+1, 1 ), LDW,
                    316:      $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
                    317:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
                    318:      $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
                    319:                CALL DGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
                    320:      $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
                    321:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
                    322:      $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
                    323:                CALL DSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
                    324:                ALPHA = -HALF*TAU( I )*DDOT( N-I, W( I+1, I ), 1,
                    325:      $                 A( I+1, I ), 1 )
                    326:                CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
                    327:             END IF
                    328: *
                    329:    20    CONTINUE
                    330:       END IF
                    331: *
                    332:       RETURN
                    333: *
                    334: *     End of DLATRD
                    335: *
                    336:       END

CVSweb interface <joel.bertrand@systella.fr>