Annotation of rpl/lapack/lapack/dlatrd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
        !             2: *
        !             3: *  -- LAPACK auxiliary routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       CHARACTER          UPLO
        !            10:       INTEGER            LDA, LDW, N, NB
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
        !            14: *     ..
        !            15: *
        !            16: *  Purpose
        !            17: *  =======
        !            18: *
        !            19: *  DLATRD reduces NB rows and columns of a real symmetric matrix A to
        !            20: *  symmetric tridiagonal form by an orthogonal similarity
        !            21: *  transformation Q' * A * Q, and returns the matrices V and W which are
        !            22: *  needed to apply the transformation to the unreduced part of A.
        !            23: *
        !            24: *  If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
        !            25: *  matrix, of which the upper triangle is supplied;
        !            26: *  if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
        !            27: *  matrix, of which the lower triangle is supplied.
        !            28: *
        !            29: *  This is an auxiliary routine called by DSYTRD.
        !            30: *
        !            31: *  Arguments
        !            32: *  =========
        !            33: *
        !            34: *  UPLO    (input) CHARACTER*1
        !            35: *          Specifies whether the upper or lower triangular part of the
        !            36: *          symmetric matrix A is stored:
        !            37: *          = 'U': Upper triangular
        !            38: *          = 'L': Lower triangular
        !            39: *
        !            40: *  N       (input) INTEGER
        !            41: *          The order of the matrix A.
        !            42: *
        !            43: *  NB      (input) INTEGER
        !            44: *          The number of rows and columns to be reduced.
        !            45: *
        !            46: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !            47: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
        !            48: *          n-by-n upper triangular part of A contains the upper
        !            49: *          triangular part of the matrix A, and the strictly lower
        !            50: *          triangular part of A is not referenced.  If UPLO = 'L', the
        !            51: *          leading n-by-n lower triangular part of A contains the lower
        !            52: *          triangular part of the matrix A, and the strictly upper
        !            53: *          triangular part of A is not referenced.
        !            54: *          On exit:
        !            55: *          if UPLO = 'U', the last NB columns have been reduced to
        !            56: *            tridiagonal form, with the diagonal elements overwriting
        !            57: *            the diagonal elements of A; the elements above the diagonal
        !            58: *            with the array TAU, represent the orthogonal matrix Q as a
        !            59: *            product of elementary reflectors;
        !            60: *          if UPLO = 'L', the first NB columns have been reduced to
        !            61: *            tridiagonal form, with the diagonal elements overwriting
        !            62: *            the diagonal elements of A; the elements below the diagonal
        !            63: *            with the array TAU, represent the  orthogonal matrix Q as a
        !            64: *            product of elementary reflectors.
        !            65: *          See Further Details.
        !            66: *
        !            67: *  LDA     (input) INTEGER
        !            68: *          The leading dimension of the array A.  LDA >= (1,N).
        !            69: *
        !            70: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
        !            71: *          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
        !            72: *          elements of the last NB columns of the reduced matrix;
        !            73: *          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
        !            74: *          the first NB columns of the reduced matrix.
        !            75: *
        !            76: *  TAU     (output) DOUBLE PRECISION array, dimension (N-1)
        !            77: *          The scalar factors of the elementary reflectors, stored in
        !            78: *          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
        !            79: *          See Further Details.
        !            80: *
        !            81: *  W       (output) DOUBLE PRECISION array, dimension (LDW,NB)
        !            82: *          The n-by-nb matrix W required to update the unreduced part
        !            83: *          of A.
        !            84: *
        !            85: *  LDW     (input) INTEGER
        !            86: *          The leading dimension of the array W. LDW >= max(1,N).
        !            87: *
        !            88: *  Further Details
        !            89: *  ===============
        !            90: *
        !            91: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
        !            92: *  reflectors
        !            93: *
        !            94: *     Q = H(n) H(n-1) . . . H(n-nb+1).
        !            95: *
        !            96: *  Each H(i) has the form
        !            97: *
        !            98: *     H(i) = I - tau * v * v'
        !            99: *
        !           100: *  where tau is a real scalar, and v is a real vector with
        !           101: *  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
        !           102: *  and tau in TAU(i-1).
        !           103: *
        !           104: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
        !           105: *  reflectors
        !           106: *
        !           107: *     Q = H(1) H(2) . . . H(nb).
        !           108: *
        !           109: *  Each H(i) has the form
        !           110: *
        !           111: *     H(i) = I - tau * v * v'
        !           112: *
        !           113: *  where tau is a real scalar, and v is a real vector with
        !           114: *  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
        !           115: *  and tau in TAU(i).
        !           116: *
        !           117: *  The elements of the vectors v together form the n-by-nb matrix V
        !           118: *  which is needed, with W, to apply the transformation to the unreduced
        !           119: *  part of the matrix, using a symmetric rank-2k update of the form:
        !           120: *  A := A - V*W' - W*V'.
        !           121: *
        !           122: *  The contents of A on exit are illustrated by the following examples
        !           123: *  with n = 5 and nb = 2:
        !           124: *
        !           125: *  if UPLO = 'U':                       if UPLO = 'L':
        !           126: *
        !           127: *    (  a   a   a   v4  v5 )              (  d                  )
        !           128: *    (      a   a   v4  v5 )              (  1   d              )
        !           129: *    (          a   1   v5 )              (  v1  1   a          )
        !           130: *    (              d   1  )              (  v1  v2  a   a      )
        !           131: *    (                  d  )              (  v1  v2  a   a   a  )
        !           132: *
        !           133: *  where d denotes a diagonal element of the reduced matrix, a denotes
        !           134: *  an element of the original matrix that is unchanged, and vi denotes
        !           135: *  an element of the vector defining H(i).
        !           136: *
        !           137: *  =====================================================================
        !           138: *
        !           139: *     .. Parameters ..
        !           140:       DOUBLE PRECISION   ZERO, ONE, HALF
        !           141:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
        !           142: *     ..
        !           143: *     .. Local Scalars ..
        !           144:       INTEGER            I, IW
        !           145:       DOUBLE PRECISION   ALPHA
        !           146: *     ..
        !           147: *     .. External Subroutines ..
        !           148:       EXTERNAL           DAXPY, DGEMV, DLARFG, DSCAL, DSYMV
        !           149: *     ..
        !           150: *     .. External Functions ..
        !           151:       LOGICAL            LSAME
        !           152:       DOUBLE PRECISION   DDOT
        !           153:       EXTERNAL           LSAME, DDOT
        !           154: *     ..
        !           155: *     .. Intrinsic Functions ..
        !           156:       INTRINSIC          MIN
        !           157: *     ..
        !           158: *     .. Executable Statements ..
        !           159: *
        !           160: *     Quick return if possible
        !           161: *
        !           162:       IF( N.LE.0 )
        !           163:      $   RETURN
        !           164: *
        !           165:       IF( LSAME( UPLO, 'U' ) ) THEN
        !           166: *
        !           167: *        Reduce last NB columns of upper triangle
        !           168: *
        !           169:          DO 10 I = N, N - NB + 1, -1
        !           170:             IW = I - N + NB
        !           171:             IF( I.LT.N ) THEN
        !           172: *
        !           173: *              Update A(1:i,i)
        !           174: *
        !           175:                CALL DGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
        !           176:      $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
        !           177:                CALL DGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
        !           178:      $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
        !           179:             END IF
        !           180:             IF( I.GT.1 ) THEN
        !           181: *
        !           182: *              Generate elementary reflector H(i) to annihilate
        !           183: *              A(1:i-2,i)
        !           184: *
        !           185:                CALL DLARFG( I-1, A( I-1, I ), A( 1, I ), 1, TAU( I-1 ) )
        !           186:                E( I-1 ) = A( I-1, I )
        !           187:                A( I-1, I ) = ONE
        !           188: *
        !           189: *              Compute W(1:i-1,i)
        !           190: *
        !           191:                CALL DSYMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
        !           192:      $                     ZERO, W( 1, IW ), 1 )
        !           193:                IF( I.LT.N ) THEN
        !           194:                   CALL DGEMV( 'Transpose', I-1, N-I, ONE, W( 1, IW+1 ),
        !           195:      $                        LDW, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
        !           196:                   CALL DGEMV( 'No transpose', I-1, N-I, -ONE,
        !           197:      $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
        !           198:      $                        W( 1, IW ), 1 )
        !           199:                   CALL DGEMV( 'Transpose', I-1, N-I, ONE, A( 1, I+1 ),
        !           200:      $                        LDA, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
        !           201:                   CALL DGEMV( 'No transpose', I-1, N-I, -ONE,
        !           202:      $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
        !           203:      $                        W( 1, IW ), 1 )
        !           204:                END IF
        !           205:                CALL DSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
        !           206:                ALPHA = -HALF*TAU( I-1 )*DDOT( I-1, W( 1, IW ), 1,
        !           207:      $                 A( 1, I ), 1 )
        !           208:                CALL DAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
        !           209:             END IF
        !           210: *
        !           211:    10    CONTINUE
        !           212:       ELSE
        !           213: *
        !           214: *        Reduce first NB columns of lower triangle
        !           215: *
        !           216:          DO 20 I = 1, NB
        !           217: *
        !           218: *           Update A(i:n,i)
        !           219: *
        !           220:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
        !           221:      $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
        !           222:             CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
        !           223:      $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
        !           224:             IF( I.LT.N ) THEN
        !           225: *
        !           226: *              Generate elementary reflector H(i) to annihilate
        !           227: *              A(i+2:n,i)
        !           228: *
        !           229:                CALL DLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
        !           230:      $                      TAU( I ) )
        !           231:                E( I ) = A( I+1, I )
        !           232:                A( I+1, I ) = ONE
        !           233: *
        !           234: *              Compute W(i+1:n,i)
        !           235: *
        !           236:                CALL DSYMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
        !           237:      $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
        !           238:                CALL DGEMV( 'Transpose', N-I, I-1, ONE, W( I+1, 1 ), LDW,
        !           239:      $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
        !           240:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
        !           241:      $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
        !           242:                CALL DGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
        !           243:      $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
        !           244:                CALL DGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
        !           245:      $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
        !           246:                CALL DSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
        !           247:                ALPHA = -HALF*TAU( I )*DDOT( N-I, W( I+1, I ), 1,
        !           248:      $                 A( I+1, I ), 1 )
        !           249:                CALL DAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
        !           250:             END IF
        !           251: *
        !           252:    20    CONTINUE
        !           253:       END IF
        !           254: *
        !           255:       RETURN
        !           256: *
        !           257: *     End of DLATRD
        !           258: *
        !           259:       END

CVSweb interface <joel.bertrand@systella.fr>