File:  [local] / rpl / lapack / lapack / dlatps.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:42:59 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLATPS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLATPS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatps.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatps.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatps.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
   22: *                          CNORM, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   26: *       INTEGER            INFO, N
   27: *       DOUBLE PRECISION   SCALE
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   AP( * ), CNORM( * ), X( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLATPS solves one of the triangular systems
   40: *>
   41: *>    A *x = s*b  or  A**T*x = s*b
   42: *>
   43: *> with scaling to prevent overflow, where A is an upper or lower
   44: *> triangular matrix stored in packed form.  Here A**T denotes the
   45: *> transpose of A, x and b are n-element vectors, and s is a scaling
   46: *> factor, usually less than or equal to 1, chosen so that the
   47: *> components of x will be less than the overflow threshold.  If the
   48: *> unscaled problem will not cause overflow, the Level 2 BLAS routine
   49: *> DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
   50: *> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] UPLO
   57: *> \verbatim
   58: *>          UPLO is CHARACTER*1
   59: *>          Specifies whether the matrix A is upper or lower triangular.
   60: *>          = 'U':  Upper triangular
   61: *>          = 'L':  Lower triangular
   62: *> \endverbatim
   63: *>
   64: *> \param[in] TRANS
   65: *> \verbatim
   66: *>          TRANS is CHARACTER*1
   67: *>          Specifies the operation applied to A.
   68: *>          = 'N':  Solve A * x = s*b  (No transpose)
   69: *>          = 'T':  Solve A**T* x = s*b  (Transpose)
   70: *>          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose)
   71: *> \endverbatim
   72: *>
   73: *> \param[in] DIAG
   74: *> \verbatim
   75: *>          DIAG is CHARACTER*1
   76: *>          Specifies whether or not the matrix A is unit triangular.
   77: *>          = 'N':  Non-unit triangular
   78: *>          = 'U':  Unit triangular
   79: *> \endverbatim
   80: *>
   81: *> \param[in] NORMIN
   82: *> \verbatim
   83: *>          NORMIN is CHARACTER*1
   84: *>          Specifies whether CNORM has been set or not.
   85: *>          = 'Y':  CNORM contains the column norms on entry
   86: *>          = 'N':  CNORM is not set on entry.  On exit, the norms will
   87: *>                  be computed and stored in CNORM.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] N
   91: *> \verbatim
   92: *>          N is INTEGER
   93: *>          The order of the matrix A.  N >= 0.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] AP
   97: *> \verbatim
   98: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   99: *>          The upper or lower triangular matrix A, packed columnwise in
  100: *>          a linear array.  The j-th column of A is stored in the array
  101: *>          AP as follows:
  102: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  103: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] X
  107: *> \verbatim
  108: *>          X is DOUBLE PRECISION array, dimension (N)
  109: *>          On entry, the right hand side b of the triangular system.
  110: *>          On exit, X is overwritten by the solution vector x.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] SCALE
  114: *> \verbatim
  115: *>          SCALE is DOUBLE PRECISION
  116: *>          The scaling factor s for the triangular system
  117: *>             A * x = s*b  or  A**T* x = s*b.
  118: *>          If SCALE = 0, the matrix A is singular or badly scaled, and
  119: *>          the vector x is an exact or approximate solution to A*x = 0.
  120: *> \endverbatim
  121: *>
  122: *> \param[in,out] CNORM
  123: *> \verbatim
  124: *>          CNORM is or output) DOUBLE PRECISION array, dimension (N)
  125: *>
  126: *>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  127: *>          contains the norm of the off-diagonal part of the j-th column
  128: *>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
  129: *>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  130: *>          must be greater than or equal to the 1-norm.
  131: *>
  132: *>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  133: *>          returns the 1-norm of the offdiagonal part of the j-th column
  134: *>          of A.
  135: *> \endverbatim
  136: *>
  137: *> \param[out] INFO
  138: *> \verbatim
  139: *>          INFO is INTEGER
  140: *>          = 0:  successful exit
  141: *>          < 0:  if INFO = -k, the k-th argument had an illegal value
  142: *> \endverbatim
  143: *
  144: *  Authors:
  145: *  ========
  146: *
  147: *> \author Univ. of Tennessee 
  148: *> \author Univ. of California Berkeley 
  149: *> \author Univ. of Colorado Denver 
  150: *> \author NAG Ltd. 
  151: *
  152: *> \date November 2011
  153: *
  154: *> \ingroup doubleOTHERauxiliary
  155: *
  156: *> \par Further Details:
  157: *  =====================
  158: *>
  159: *> \verbatim
  160: *>
  161: *>  A rough bound on x is computed; if that is less than overflow, DTPSV
  162: *>  is called, otherwise, specific code is used which checks for possible
  163: *>  overflow or divide-by-zero at every operation.
  164: *>
  165: *>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  166: *>  if A is lower triangular is
  167: *>
  168: *>       x[1:n] := b[1:n]
  169: *>       for j = 1, ..., n
  170: *>            x(j) := x(j) / A(j,j)
  171: *>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  172: *>       end
  173: *>
  174: *>  Define bounds on the components of x after j iterations of the loop:
  175: *>     M(j) = bound on x[1:j]
  176: *>     G(j) = bound on x[j+1:n]
  177: *>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  178: *>
  179: *>  Then for iteration j+1 we have
  180: *>     M(j+1) <= G(j) / | A(j+1,j+1) |
  181: *>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  182: *>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  183: *>
  184: *>  where CNORM(j+1) is greater than or equal to the infinity-norm of
  185: *>  column j+1 of A, not counting the diagonal.  Hence
  186: *>
  187: *>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  188: *>                  1<=i<=j
  189: *>  and
  190: *>
  191: *>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  192: *>                                   1<=i< j
  193: *>
  194: *>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
  195: *>  reciprocal of the largest M(j), j=1,..,n, is larger than
  196: *>  max(underflow, 1/overflow).
  197: *>
  198: *>  The bound on x(j) is also used to determine when a step in the
  199: *>  columnwise method can be performed without fear of overflow.  If
  200: *>  the computed bound is greater than a large constant, x is scaled to
  201: *>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  202: *>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  203: *>
  204: *>  Similarly, a row-wise scheme is used to solve A**T*x = b.  The basic
  205: *>  algorithm for A upper triangular is
  206: *>
  207: *>       for j = 1, ..., n
  208: *>            x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
  209: *>       end
  210: *>
  211: *>  We simultaneously compute two bounds
  212: *>       G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
  213: *>       M(j) = bound on x(i), 1<=i<=j
  214: *>
  215: *>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  216: *>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  217: *>  Then the bound on x(j) is
  218: *>
  219: *>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  220: *>
  221: *>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  222: *>                      1<=i<=j
  223: *>
  224: *>  and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
  225: *>  than max(underflow, 1/overflow).
  226: *> \endverbatim
  227: *>
  228: *  =====================================================================
  229:       SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  230:      $                   CNORM, INFO )
  231: *
  232: *  -- LAPACK auxiliary routine (version 3.4.0) --
  233: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  234: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  235: *     November 2011
  236: *
  237: *     .. Scalar Arguments ..
  238:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
  239:       INTEGER            INFO, N
  240:       DOUBLE PRECISION   SCALE
  241: *     ..
  242: *     .. Array Arguments ..
  243:       DOUBLE PRECISION   AP( * ), CNORM( * ), X( * )
  244: *     ..
  245: *
  246: *  =====================================================================
  247: *
  248: *     .. Parameters ..
  249:       DOUBLE PRECISION   ZERO, HALF, ONE
  250:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  251: *     ..
  252: *     .. Local Scalars ..
  253:       LOGICAL            NOTRAN, NOUNIT, UPPER
  254:       INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
  255:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  256:      $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  257: *     ..
  258: *     .. External Functions ..
  259:       LOGICAL            LSAME
  260:       INTEGER            IDAMAX
  261:       DOUBLE PRECISION   DASUM, DDOT, DLAMCH
  262:       EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
  263: *     ..
  264: *     .. External Subroutines ..
  265:       EXTERNAL           DAXPY, DSCAL, DTPSV, XERBLA
  266: *     ..
  267: *     .. Intrinsic Functions ..
  268:       INTRINSIC          ABS, MAX, MIN
  269: *     ..
  270: *     .. Executable Statements ..
  271: *
  272:       INFO = 0
  273:       UPPER = LSAME( UPLO, 'U' )
  274:       NOTRAN = LSAME( TRANS, 'N' )
  275:       NOUNIT = LSAME( DIAG, 'N' )
  276: *
  277: *     Test the input parameters.
  278: *
  279:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  280:          INFO = -1
  281:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  282:      $         LSAME( TRANS, 'C' ) ) THEN
  283:          INFO = -2
  284:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  285:          INFO = -3
  286:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  287:      $         LSAME( NORMIN, 'N' ) ) THEN
  288:          INFO = -4
  289:       ELSE IF( N.LT.0 ) THEN
  290:          INFO = -5
  291:       END IF
  292:       IF( INFO.NE.0 ) THEN
  293:          CALL XERBLA( 'DLATPS', -INFO )
  294:          RETURN
  295:       END IF
  296: *
  297: *     Quick return if possible
  298: *
  299:       IF( N.EQ.0 )
  300:      $   RETURN
  301: *
  302: *     Determine machine dependent parameters to control overflow.
  303: *
  304:       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  305:       BIGNUM = ONE / SMLNUM
  306:       SCALE = ONE
  307: *
  308:       IF( LSAME( NORMIN, 'N' ) ) THEN
  309: *
  310: *        Compute the 1-norm of each column, not including the diagonal.
  311: *
  312:          IF( UPPER ) THEN
  313: *
  314: *           A is upper triangular.
  315: *
  316:             IP = 1
  317:             DO 10 J = 1, N
  318:                CNORM( J ) = DASUM( J-1, AP( IP ), 1 )
  319:                IP = IP + J
  320:    10       CONTINUE
  321:          ELSE
  322: *
  323: *           A is lower triangular.
  324: *
  325:             IP = 1
  326:             DO 20 J = 1, N - 1
  327:                CNORM( J ) = DASUM( N-J, AP( IP+1 ), 1 )
  328:                IP = IP + N - J + 1
  329:    20       CONTINUE
  330:             CNORM( N ) = ZERO
  331:          END IF
  332:       END IF
  333: *
  334: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  335: *     greater than BIGNUM.
  336: *
  337:       IMAX = IDAMAX( N, CNORM, 1 )
  338:       TMAX = CNORM( IMAX )
  339:       IF( TMAX.LE.BIGNUM ) THEN
  340:          TSCAL = ONE
  341:       ELSE
  342:          TSCAL = ONE / ( SMLNUM*TMAX )
  343:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  344:       END IF
  345: *
  346: *     Compute a bound on the computed solution vector to see if the
  347: *     Level 2 BLAS routine DTPSV can be used.
  348: *
  349:       J = IDAMAX( N, X, 1 )
  350:       XMAX = ABS( X( J ) )
  351:       XBND = XMAX
  352:       IF( NOTRAN ) THEN
  353: *
  354: *        Compute the growth in A * x = b.
  355: *
  356:          IF( UPPER ) THEN
  357:             JFIRST = N
  358:             JLAST = 1
  359:             JINC = -1
  360:          ELSE
  361:             JFIRST = 1
  362:             JLAST = N
  363:             JINC = 1
  364:          END IF
  365: *
  366:          IF( TSCAL.NE.ONE ) THEN
  367:             GROW = ZERO
  368:             GO TO 50
  369:          END IF
  370: *
  371:          IF( NOUNIT ) THEN
  372: *
  373: *           A is non-unit triangular.
  374: *
  375: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  376: *           Initially, G(0) = max{x(i), i=1,...,n}.
  377: *
  378:             GROW = ONE / MAX( XBND, SMLNUM )
  379:             XBND = GROW
  380:             IP = JFIRST*( JFIRST+1 ) / 2
  381:             JLEN = N
  382:             DO 30 J = JFIRST, JLAST, JINC
  383: *
  384: *              Exit the loop if the growth factor is too small.
  385: *
  386:                IF( GROW.LE.SMLNUM )
  387:      $            GO TO 50
  388: *
  389: *              M(j) = G(j-1) / abs(A(j,j))
  390: *
  391:                TJJ = ABS( AP( IP ) )
  392:                XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  393:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  394: *
  395: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  396: *
  397:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  398:                ELSE
  399: *
  400: *                 G(j) could overflow, set GROW to 0.
  401: *
  402:                   GROW = ZERO
  403:                END IF
  404:                IP = IP + JINC*JLEN
  405:                JLEN = JLEN - 1
  406:    30       CONTINUE
  407:             GROW = XBND
  408:          ELSE
  409: *
  410: *           A is unit triangular.
  411: *
  412: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  413: *
  414:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  415:             DO 40 J = JFIRST, JLAST, JINC
  416: *
  417: *              Exit the loop if the growth factor is too small.
  418: *
  419:                IF( GROW.LE.SMLNUM )
  420:      $            GO TO 50
  421: *
  422: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  423: *
  424:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  425:    40       CONTINUE
  426:          END IF
  427:    50    CONTINUE
  428: *
  429:       ELSE
  430: *
  431: *        Compute the growth in A**T * x = b.
  432: *
  433:          IF( UPPER ) THEN
  434:             JFIRST = 1
  435:             JLAST = N
  436:             JINC = 1
  437:          ELSE
  438:             JFIRST = N
  439:             JLAST = 1
  440:             JINC = -1
  441:          END IF
  442: *
  443:          IF( TSCAL.NE.ONE ) THEN
  444:             GROW = ZERO
  445:             GO TO 80
  446:          END IF
  447: *
  448:          IF( NOUNIT ) THEN
  449: *
  450: *           A is non-unit triangular.
  451: *
  452: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  453: *           Initially, M(0) = max{x(i), i=1,...,n}.
  454: *
  455:             GROW = ONE / MAX( XBND, SMLNUM )
  456:             XBND = GROW
  457:             IP = JFIRST*( JFIRST+1 ) / 2
  458:             JLEN = 1
  459:             DO 60 J = JFIRST, JLAST, JINC
  460: *
  461: *              Exit the loop if the growth factor is too small.
  462: *
  463:                IF( GROW.LE.SMLNUM )
  464:      $            GO TO 80
  465: *
  466: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  467: *
  468:                XJ = ONE + CNORM( J )
  469:                GROW = MIN( GROW, XBND / XJ )
  470: *
  471: *              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  472: *
  473:                TJJ = ABS( AP( IP ) )
  474:                IF( XJ.GT.TJJ )
  475:      $            XBND = XBND*( TJJ / XJ )
  476:                JLEN = JLEN + 1
  477:                IP = IP + JINC*JLEN
  478:    60       CONTINUE
  479:             GROW = MIN( GROW, XBND )
  480:          ELSE
  481: *
  482: *           A is unit triangular.
  483: *
  484: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  485: *
  486:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  487:             DO 70 J = JFIRST, JLAST, JINC
  488: *
  489: *              Exit the loop if the growth factor is too small.
  490: *
  491:                IF( GROW.LE.SMLNUM )
  492:      $            GO TO 80
  493: *
  494: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  495: *
  496:                XJ = ONE + CNORM( J )
  497:                GROW = GROW / XJ
  498:    70       CONTINUE
  499:          END IF
  500:    80    CONTINUE
  501:       END IF
  502: *
  503:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  504: *
  505: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  506: *        elements of X is not too small.
  507: *
  508:          CALL DTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
  509:       ELSE
  510: *
  511: *        Use a Level 1 BLAS solve, scaling intermediate results.
  512: *
  513:          IF( XMAX.GT.BIGNUM ) THEN
  514: *
  515: *           Scale X so that its components are less than or equal to
  516: *           BIGNUM in absolute value.
  517: *
  518:             SCALE = BIGNUM / XMAX
  519:             CALL DSCAL( N, SCALE, X, 1 )
  520:             XMAX = BIGNUM
  521:          END IF
  522: *
  523:          IF( NOTRAN ) THEN
  524: *
  525: *           Solve A * x = b
  526: *
  527:             IP = JFIRST*( JFIRST+1 ) / 2
  528:             DO 110 J = JFIRST, JLAST, JINC
  529: *
  530: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  531: *
  532:                XJ = ABS( X( J ) )
  533:                IF( NOUNIT ) THEN
  534:                   TJJS = AP( IP )*TSCAL
  535:                ELSE
  536:                   TJJS = TSCAL
  537:                   IF( TSCAL.EQ.ONE )
  538:      $               GO TO 100
  539:                END IF
  540:                TJJ = ABS( TJJS )
  541:                IF( TJJ.GT.SMLNUM ) THEN
  542: *
  543: *                    abs(A(j,j)) > SMLNUM:
  544: *
  545:                   IF( TJJ.LT.ONE ) THEN
  546:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  547: *
  548: *                          Scale x by 1/b(j).
  549: *
  550:                         REC = ONE / XJ
  551:                         CALL DSCAL( N, REC, X, 1 )
  552:                         SCALE = SCALE*REC
  553:                         XMAX = XMAX*REC
  554:                      END IF
  555:                   END IF
  556:                   X( J ) = X( J ) / TJJS
  557:                   XJ = ABS( X( J ) )
  558:                ELSE IF( TJJ.GT.ZERO ) THEN
  559: *
  560: *                    0 < abs(A(j,j)) <= SMLNUM:
  561: *
  562:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  563: *
  564: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  565: *                       to avoid overflow when dividing by A(j,j).
  566: *
  567:                      REC = ( TJJ*BIGNUM ) / XJ
  568:                      IF( CNORM( J ).GT.ONE ) THEN
  569: *
  570: *                          Scale by 1/CNORM(j) to avoid overflow when
  571: *                          multiplying x(j) times column j.
  572: *
  573:                         REC = REC / CNORM( J )
  574:                      END IF
  575:                      CALL DSCAL( N, REC, X, 1 )
  576:                      SCALE = SCALE*REC
  577:                      XMAX = XMAX*REC
  578:                   END IF
  579:                   X( J ) = X( J ) / TJJS
  580:                   XJ = ABS( X( J ) )
  581:                ELSE
  582: *
  583: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  584: *                    scale = 0, and compute a solution to A*x = 0.
  585: *
  586:                   DO 90 I = 1, N
  587:                      X( I ) = ZERO
  588:    90             CONTINUE
  589:                   X( J ) = ONE
  590:                   XJ = ONE
  591:                   SCALE = ZERO
  592:                   XMAX = ZERO
  593:                END IF
  594:   100          CONTINUE
  595: *
  596: *              Scale x if necessary to avoid overflow when adding a
  597: *              multiple of column j of A.
  598: *
  599:                IF( XJ.GT.ONE ) THEN
  600:                   REC = ONE / XJ
  601:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  602: *
  603: *                    Scale x by 1/(2*abs(x(j))).
  604: *
  605:                      REC = REC*HALF
  606:                      CALL DSCAL( N, REC, X, 1 )
  607:                      SCALE = SCALE*REC
  608:                   END IF
  609:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  610: *
  611: *                 Scale x by 1/2.
  612: *
  613:                   CALL DSCAL( N, HALF, X, 1 )
  614:                   SCALE = SCALE*HALF
  615:                END IF
  616: *
  617:                IF( UPPER ) THEN
  618:                   IF( J.GT.1 ) THEN
  619: *
  620: *                    Compute the update
  621: *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  622: *
  623:                      CALL DAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
  624:      $                           1 )
  625:                      I = IDAMAX( J-1, X, 1 )
  626:                      XMAX = ABS( X( I ) )
  627:                   END IF
  628:                   IP = IP - J
  629:                ELSE
  630:                   IF( J.LT.N ) THEN
  631: *
  632: *                    Compute the update
  633: *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  634: *
  635:                      CALL DAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
  636:      $                           X( J+1 ), 1 )
  637:                      I = J + IDAMAX( N-J, X( J+1 ), 1 )
  638:                      XMAX = ABS( X( I ) )
  639:                   END IF
  640:                   IP = IP + N - J + 1
  641:                END IF
  642:   110       CONTINUE
  643: *
  644:          ELSE
  645: *
  646: *           Solve A**T * x = b
  647: *
  648:             IP = JFIRST*( JFIRST+1 ) / 2
  649:             JLEN = 1
  650:             DO 160 J = JFIRST, JLAST, JINC
  651: *
  652: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  653: *                                    k<>j
  654: *
  655:                XJ = ABS( X( J ) )
  656:                USCAL = TSCAL
  657:                REC = ONE / MAX( XMAX, ONE )
  658:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  659: *
  660: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  661: *
  662:                   REC = REC*HALF
  663:                   IF( NOUNIT ) THEN
  664:                      TJJS = AP( IP )*TSCAL
  665:                   ELSE
  666:                      TJJS = TSCAL
  667:                   END IF
  668:                   TJJ = ABS( TJJS )
  669:                   IF( TJJ.GT.ONE ) THEN
  670: *
  671: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  672: *
  673:                      REC = MIN( ONE, REC*TJJ )
  674:                      USCAL = USCAL / TJJS
  675:                   END IF
  676:                   IF( REC.LT.ONE ) THEN
  677:                      CALL DSCAL( N, REC, X, 1 )
  678:                      SCALE = SCALE*REC
  679:                      XMAX = XMAX*REC
  680:                   END IF
  681:                END IF
  682: *
  683:                SUMJ = ZERO
  684:                IF( USCAL.EQ.ONE ) THEN
  685: *
  686: *                 If the scaling needed for A in the dot product is 1,
  687: *                 call DDOT to perform the dot product.
  688: *
  689:                   IF( UPPER ) THEN
  690:                      SUMJ = DDOT( J-1, AP( IP-J+1 ), 1, X, 1 )
  691:                   ELSE IF( J.LT.N ) THEN
  692:                      SUMJ = DDOT( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  693:                   END IF
  694:                ELSE
  695: *
  696: *                 Otherwise, use in-line code for the dot product.
  697: *
  698:                   IF( UPPER ) THEN
  699:                      DO 120 I = 1, J - 1
  700:                         SUMJ = SUMJ + ( AP( IP-J+I )*USCAL )*X( I )
  701:   120                CONTINUE
  702:                   ELSE IF( J.LT.N ) THEN
  703:                      DO 130 I = 1, N - J
  704:                         SUMJ = SUMJ + ( AP( IP+I )*USCAL )*X( J+I )
  705:   130                CONTINUE
  706:                   END IF
  707:                END IF
  708: *
  709:                IF( USCAL.EQ.TSCAL ) THEN
  710: *
  711: *                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  712: *                 was not used to scale the dotproduct.
  713: *
  714:                   X( J ) = X( J ) - SUMJ
  715:                   XJ = ABS( X( J ) )
  716:                   IF( NOUNIT ) THEN
  717: *
  718: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  719: *
  720:                      TJJS = AP( IP )*TSCAL
  721:                   ELSE
  722:                      TJJS = TSCAL
  723:                      IF( TSCAL.EQ.ONE )
  724:      $                  GO TO 150
  725:                   END IF
  726:                   TJJ = ABS( TJJS )
  727:                   IF( TJJ.GT.SMLNUM ) THEN
  728: *
  729: *                       abs(A(j,j)) > SMLNUM:
  730: *
  731:                      IF( TJJ.LT.ONE ) THEN
  732:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  733: *
  734: *                             Scale X by 1/abs(x(j)).
  735: *
  736:                            REC = ONE / XJ
  737:                            CALL DSCAL( N, REC, X, 1 )
  738:                            SCALE = SCALE*REC
  739:                            XMAX = XMAX*REC
  740:                         END IF
  741:                      END IF
  742:                      X( J ) = X( J ) / TJJS
  743:                   ELSE IF( TJJ.GT.ZERO ) THEN
  744: *
  745: *                       0 < abs(A(j,j)) <= SMLNUM:
  746: *
  747:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  748: *
  749: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  750: *
  751:                         REC = ( TJJ*BIGNUM ) / XJ
  752:                         CALL DSCAL( N, REC, X, 1 )
  753:                         SCALE = SCALE*REC
  754:                         XMAX = XMAX*REC
  755:                      END IF
  756:                      X( J ) = X( J ) / TJJS
  757:                   ELSE
  758: *
  759: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  760: *                       scale = 0, and compute a solution to A**T*x = 0.
  761: *
  762:                      DO 140 I = 1, N
  763:                         X( I ) = ZERO
  764:   140                CONTINUE
  765:                      X( J ) = ONE
  766:                      SCALE = ZERO
  767:                      XMAX = ZERO
  768:                   END IF
  769:   150             CONTINUE
  770:                ELSE
  771: *
  772: *                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
  773: *                 product has already been divided by 1/A(j,j).
  774: *
  775:                   X( J ) = X( J ) / TJJS - SUMJ
  776:                END IF
  777:                XMAX = MAX( XMAX, ABS( X( J ) ) )
  778:                JLEN = JLEN + 1
  779:                IP = IP + JINC*JLEN
  780:   160       CONTINUE
  781:          END IF
  782:          SCALE = SCALE / TSCAL
  783:       END IF
  784: *
  785: *     Scale the column norms by 1/TSCAL for return.
  786: *
  787:       IF( TSCAL.NE.ONE ) THEN
  788:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  789:       END IF
  790: *
  791:       RETURN
  792: *
  793: *     End of DLATPS
  794: *
  795:       END

CVSweb interface <joel.bertrand@systella.fr>