File:  [local] / rpl / lapack / lapack / dlatps.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:00 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLATPS solves a triangular system of equations with the matrix held in packed storage.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLATPS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatps.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatps.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatps.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
   22: *                          CNORM, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   26: *       INTEGER            INFO, N
   27: *       DOUBLE PRECISION   SCALE
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   AP( * ), CNORM( * ), X( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLATPS solves one of the triangular systems
   40: *>
   41: *>    A *x = s*b  or  A**T*x = s*b
   42: *>
   43: *> with scaling to prevent overflow, where A is an upper or lower
   44: *> triangular matrix stored in packed form.  Here A**T denotes the
   45: *> transpose of A, x and b are n-element vectors, and s is a scaling
   46: *> factor, usually less than or equal to 1, chosen so that the
   47: *> components of x will be less than the overflow threshold.  If the
   48: *> unscaled problem will not cause overflow, the Level 2 BLAS routine
   49: *> DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
   50: *> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] UPLO
   57: *> \verbatim
   58: *>          UPLO is CHARACTER*1
   59: *>          Specifies whether the matrix A is upper or lower triangular.
   60: *>          = 'U':  Upper triangular
   61: *>          = 'L':  Lower triangular
   62: *> \endverbatim
   63: *>
   64: *> \param[in] TRANS
   65: *> \verbatim
   66: *>          TRANS is CHARACTER*1
   67: *>          Specifies the operation applied to A.
   68: *>          = 'N':  Solve A * x = s*b  (No transpose)
   69: *>          = 'T':  Solve A**T* x = s*b  (Transpose)
   70: *>          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose)
   71: *> \endverbatim
   72: *>
   73: *> \param[in] DIAG
   74: *> \verbatim
   75: *>          DIAG is CHARACTER*1
   76: *>          Specifies whether or not the matrix A is unit triangular.
   77: *>          = 'N':  Non-unit triangular
   78: *>          = 'U':  Unit triangular
   79: *> \endverbatim
   80: *>
   81: *> \param[in] NORMIN
   82: *> \verbatim
   83: *>          NORMIN is CHARACTER*1
   84: *>          Specifies whether CNORM has been set or not.
   85: *>          = 'Y':  CNORM contains the column norms on entry
   86: *>          = 'N':  CNORM is not set on entry.  On exit, the norms will
   87: *>                  be computed and stored in CNORM.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] N
   91: *> \verbatim
   92: *>          N is INTEGER
   93: *>          The order of the matrix A.  N >= 0.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] AP
   97: *> \verbatim
   98: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   99: *>          The upper or lower triangular matrix A, packed columnwise in
  100: *>          a linear array.  The j-th column of A is stored in the array
  101: *>          AP as follows:
  102: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  103: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] X
  107: *> \verbatim
  108: *>          X is DOUBLE PRECISION array, dimension (N)
  109: *>          On entry, the right hand side b of the triangular system.
  110: *>          On exit, X is overwritten by the solution vector x.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] SCALE
  114: *> \verbatim
  115: *>          SCALE is DOUBLE PRECISION
  116: *>          The scaling factor s for the triangular system
  117: *>             A * x = s*b  or  A**T* x = s*b.
  118: *>          If SCALE = 0, the matrix A is singular or badly scaled, and
  119: *>          the vector x is an exact or approximate solution to A*x = 0.
  120: *> \endverbatim
  121: *>
  122: *> \param[in,out] CNORM
  123: *> \verbatim
  124: *>          CNORM is DOUBLE PRECISION array, dimension (N)
  125: *>
  126: *>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  127: *>          contains the norm of the off-diagonal part of the j-th column
  128: *>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
  129: *>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  130: *>          must be greater than or equal to the 1-norm.
  131: *>
  132: *>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  133: *>          returns the 1-norm of the offdiagonal part of the j-th column
  134: *>          of A.
  135: *> \endverbatim
  136: *>
  137: *> \param[out] INFO
  138: *> \verbatim
  139: *>          INFO is INTEGER
  140: *>          = 0:  successful exit
  141: *>          < 0:  if INFO = -k, the k-th argument had an illegal value
  142: *> \endverbatim
  143: *
  144: *  Authors:
  145: *  ========
  146: *
  147: *> \author Univ. of Tennessee
  148: *> \author Univ. of California Berkeley
  149: *> \author Univ. of Colorado Denver
  150: *> \author NAG Ltd.
  151: *
  152: *> \ingroup doubleOTHERauxiliary
  153: *
  154: *> \par Further Details:
  155: *  =====================
  156: *>
  157: *> \verbatim
  158: *>
  159: *>  A rough bound on x is computed; if that is less than overflow, DTPSV
  160: *>  is called, otherwise, specific code is used which checks for possible
  161: *>  overflow or divide-by-zero at every operation.
  162: *>
  163: *>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  164: *>  if A is lower triangular is
  165: *>
  166: *>       x[1:n] := b[1:n]
  167: *>       for j = 1, ..., n
  168: *>            x(j) := x(j) / A(j,j)
  169: *>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  170: *>       end
  171: *>
  172: *>  Define bounds on the components of x after j iterations of the loop:
  173: *>     M(j) = bound on x[1:j]
  174: *>     G(j) = bound on x[j+1:n]
  175: *>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  176: *>
  177: *>  Then for iteration j+1 we have
  178: *>     M(j+1) <= G(j) / | A(j+1,j+1) |
  179: *>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  180: *>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  181: *>
  182: *>  where CNORM(j+1) is greater than or equal to the infinity-norm of
  183: *>  column j+1 of A, not counting the diagonal.  Hence
  184: *>
  185: *>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  186: *>                  1<=i<=j
  187: *>  and
  188: *>
  189: *>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  190: *>                                   1<=i< j
  191: *>
  192: *>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
  193: *>  reciprocal of the largest M(j), j=1,..,n, is larger than
  194: *>  max(underflow, 1/overflow).
  195: *>
  196: *>  The bound on x(j) is also used to determine when a step in the
  197: *>  columnwise method can be performed without fear of overflow.  If
  198: *>  the computed bound is greater than a large constant, x is scaled to
  199: *>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  200: *>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  201: *>
  202: *>  Similarly, a row-wise scheme is used to solve A**T*x = b.  The basic
  203: *>  algorithm for A upper triangular is
  204: *>
  205: *>       for j = 1, ..., n
  206: *>            x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
  207: *>       end
  208: *>
  209: *>  We simultaneously compute two bounds
  210: *>       G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
  211: *>       M(j) = bound on x(i), 1<=i<=j
  212: *>
  213: *>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  214: *>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  215: *>  Then the bound on x(j) is
  216: *>
  217: *>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  218: *>
  219: *>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  220: *>                      1<=i<=j
  221: *>
  222: *>  and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
  223: *>  than max(underflow, 1/overflow).
  224: *> \endverbatim
  225: *>
  226: *  =====================================================================
  227:       SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  228:      $                   CNORM, INFO )
  229: *
  230: *  -- LAPACK auxiliary routine --
  231: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  232: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  233: *
  234: *     .. Scalar Arguments ..
  235:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
  236:       INTEGER            INFO, N
  237:       DOUBLE PRECISION   SCALE
  238: *     ..
  239: *     .. Array Arguments ..
  240:       DOUBLE PRECISION   AP( * ), CNORM( * ), X( * )
  241: *     ..
  242: *
  243: *  =====================================================================
  244: *
  245: *     .. Parameters ..
  246:       DOUBLE PRECISION   ZERO, HALF, ONE
  247:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  248: *     ..
  249: *     .. Local Scalars ..
  250:       LOGICAL            NOTRAN, NOUNIT, UPPER
  251:       INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
  252:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  253:      $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  254: *     ..
  255: *     .. External Functions ..
  256:       LOGICAL            LSAME
  257:       INTEGER            IDAMAX
  258:       DOUBLE PRECISION   DASUM, DDOT, DLAMCH
  259:       EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
  260: *     ..
  261: *     .. External Subroutines ..
  262:       EXTERNAL           DAXPY, DSCAL, DTPSV, XERBLA
  263: *     ..
  264: *     .. Intrinsic Functions ..
  265:       INTRINSIC          ABS, MAX, MIN
  266: *     ..
  267: *     .. Executable Statements ..
  268: *
  269:       INFO = 0
  270:       UPPER = LSAME( UPLO, 'U' )
  271:       NOTRAN = LSAME( TRANS, 'N' )
  272:       NOUNIT = LSAME( DIAG, 'N' )
  273: *
  274: *     Test the input parameters.
  275: *
  276:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  277:          INFO = -1
  278:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  279:      $         LSAME( TRANS, 'C' ) ) THEN
  280:          INFO = -2
  281:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  282:          INFO = -3
  283:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  284:      $         LSAME( NORMIN, 'N' ) ) THEN
  285:          INFO = -4
  286:       ELSE IF( N.LT.0 ) THEN
  287:          INFO = -5
  288:       END IF
  289:       IF( INFO.NE.0 ) THEN
  290:          CALL XERBLA( 'DLATPS', -INFO )
  291:          RETURN
  292:       END IF
  293: *
  294: *     Quick return if possible
  295: *
  296:       IF( N.EQ.0 )
  297:      $   RETURN
  298: *
  299: *     Determine machine dependent parameters to control overflow.
  300: *
  301:       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  302:       BIGNUM = ONE / SMLNUM
  303:       SCALE = ONE
  304: *
  305:       IF( LSAME( NORMIN, 'N' ) ) THEN
  306: *
  307: *        Compute the 1-norm of each column, not including the diagonal.
  308: *
  309:          IF( UPPER ) THEN
  310: *
  311: *           A is upper triangular.
  312: *
  313:             IP = 1
  314:             DO 10 J = 1, N
  315:                CNORM( J ) = DASUM( J-1, AP( IP ), 1 )
  316:                IP = IP + J
  317:    10       CONTINUE
  318:          ELSE
  319: *
  320: *           A is lower triangular.
  321: *
  322:             IP = 1
  323:             DO 20 J = 1, N - 1
  324:                CNORM( J ) = DASUM( N-J, AP( IP+1 ), 1 )
  325:                IP = IP + N - J + 1
  326:    20       CONTINUE
  327:             CNORM( N ) = ZERO
  328:          END IF
  329:       END IF
  330: *
  331: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  332: *     greater than BIGNUM.
  333: *
  334:       IMAX = IDAMAX( N, CNORM, 1 )
  335:       TMAX = CNORM( IMAX )
  336:       IF( TMAX.LE.BIGNUM ) THEN
  337:          TSCAL = ONE
  338:       ELSE
  339:          TSCAL = ONE / ( SMLNUM*TMAX )
  340:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  341:       END IF
  342: *
  343: *     Compute a bound on the computed solution vector to see if the
  344: *     Level 2 BLAS routine DTPSV can be used.
  345: *
  346:       J = IDAMAX( N, X, 1 )
  347:       XMAX = ABS( X( J ) )
  348:       XBND = XMAX
  349:       IF( NOTRAN ) THEN
  350: *
  351: *        Compute the growth in A * x = b.
  352: *
  353:          IF( UPPER ) THEN
  354:             JFIRST = N
  355:             JLAST = 1
  356:             JINC = -1
  357:          ELSE
  358:             JFIRST = 1
  359:             JLAST = N
  360:             JINC = 1
  361:          END IF
  362: *
  363:          IF( TSCAL.NE.ONE ) THEN
  364:             GROW = ZERO
  365:             GO TO 50
  366:          END IF
  367: *
  368:          IF( NOUNIT ) THEN
  369: *
  370: *           A is non-unit triangular.
  371: *
  372: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  373: *           Initially, G(0) = max{x(i), i=1,...,n}.
  374: *
  375:             GROW = ONE / MAX( XBND, SMLNUM )
  376:             XBND = GROW
  377:             IP = JFIRST*( JFIRST+1 ) / 2
  378:             JLEN = N
  379:             DO 30 J = JFIRST, JLAST, JINC
  380: *
  381: *              Exit the loop if the growth factor is too small.
  382: *
  383:                IF( GROW.LE.SMLNUM )
  384:      $            GO TO 50
  385: *
  386: *              M(j) = G(j-1) / abs(A(j,j))
  387: *
  388:                TJJ = ABS( AP( IP ) )
  389:                XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  390:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  391: *
  392: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  393: *
  394:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  395:                ELSE
  396: *
  397: *                 G(j) could overflow, set GROW to 0.
  398: *
  399:                   GROW = ZERO
  400:                END IF
  401:                IP = IP + JINC*JLEN
  402:                JLEN = JLEN - 1
  403:    30       CONTINUE
  404:             GROW = XBND
  405:          ELSE
  406: *
  407: *           A is unit triangular.
  408: *
  409: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  410: *
  411:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  412:             DO 40 J = JFIRST, JLAST, JINC
  413: *
  414: *              Exit the loop if the growth factor is too small.
  415: *
  416:                IF( GROW.LE.SMLNUM )
  417:      $            GO TO 50
  418: *
  419: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  420: *
  421:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  422:    40       CONTINUE
  423:          END IF
  424:    50    CONTINUE
  425: *
  426:       ELSE
  427: *
  428: *        Compute the growth in A**T * x = b.
  429: *
  430:          IF( UPPER ) THEN
  431:             JFIRST = 1
  432:             JLAST = N
  433:             JINC = 1
  434:          ELSE
  435:             JFIRST = N
  436:             JLAST = 1
  437:             JINC = -1
  438:          END IF
  439: *
  440:          IF( TSCAL.NE.ONE ) THEN
  441:             GROW = ZERO
  442:             GO TO 80
  443:          END IF
  444: *
  445:          IF( NOUNIT ) THEN
  446: *
  447: *           A is non-unit triangular.
  448: *
  449: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  450: *           Initially, M(0) = max{x(i), i=1,...,n}.
  451: *
  452:             GROW = ONE / MAX( XBND, SMLNUM )
  453:             XBND = GROW
  454:             IP = JFIRST*( JFIRST+1 ) / 2
  455:             JLEN = 1
  456:             DO 60 J = JFIRST, JLAST, JINC
  457: *
  458: *              Exit the loop if the growth factor is too small.
  459: *
  460:                IF( GROW.LE.SMLNUM )
  461:      $            GO TO 80
  462: *
  463: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  464: *
  465:                XJ = ONE + CNORM( J )
  466:                GROW = MIN( GROW, XBND / XJ )
  467: *
  468: *              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  469: *
  470:                TJJ = ABS( AP( IP ) )
  471:                IF( XJ.GT.TJJ )
  472:      $            XBND = XBND*( TJJ / XJ )
  473:                JLEN = JLEN + 1
  474:                IP = IP + JINC*JLEN
  475:    60       CONTINUE
  476:             GROW = MIN( GROW, XBND )
  477:          ELSE
  478: *
  479: *           A is unit triangular.
  480: *
  481: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  482: *
  483:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  484:             DO 70 J = JFIRST, JLAST, JINC
  485: *
  486: *              Exit the loop if the growth factor is too small.
  487: *
  488:                IF( GROW.LE.SMLNUM )
  489:      $            GO TO 80
  490: *
  491: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  492: *
  493:                XJ = ONE + CNORM( J )
  494:                GROW = GROW / XJ
  495:    70       CONTINUE
  496:          END IF
  497:    80    CONTINUE
  498:       END IF
  499: *
  500:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  501: *
  502: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  503: *        elements of X is not too small.
  504: *
  505:          CALL DTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
  506:       ELSE
  507: *
  508: *        Use a Level 1 BLAS solve, scaling intermediate results.
  509: *
  510:          IF( XMAX.GT.BIGNUM ) THEN
  511: *
  512: *           Scale X so that its components are less than or equal to
  513: *           BIGNUM in absolute value.
  514: *
  515:             SCALE = BIGNUM / XMAX
  516:             CALL DSCAL( N, SCALE, X, 1 )
  517:             XMAX = BIGNUM
  518:          END IF
  519: *
  520:          IF( NOTRAN ) THEN
  521: *
  522: *           Solve A * x = b
  523: *
  524:             IP = JFIRST*( JFIRST+1 ) / 2
  525:             DO 110 J = JFIRST, JLAST, JINC
  526: *
  527: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  528: *
  529:                XJ = ABS( X( J ) )
  530:                IF( NOUNIT ) THEN
  531:                   TJJS = AP( IP )*TSCAL
  532:                ELSE
  533:                   TJJS = TSCAL
  534:                   IF( TSCAL.EQ.ONE )
  535:      $               GO TO 100
  536:                END IF
  537:                TJJ = ABS( TJJS )
  538:                IF( TJJ.GT.SMLNUM ) THEN
  539: *
  540: *                    abs(A(j,j)) > SMLNUM:
  541: *
  542:                   IF( TJJ.LT.ONE ) THEN
  543:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  544: *
  545: *                          Scale x by 1/b(j).
  546: *
  547:                         REC = ONE / XJ
  548:                         CALL DSCAL( N, REC, X, 1 )
  549:                         SCALE = SCALE*REC
  550:                         XMAX = XMAX*REC
  551:                      END IF
  552:                   END IF
  553:                   X( J ) = X( J ) / TJJS
  554:                   XJ = ABS( X( J ) )
  555:                ELSE IF( TJJ.GT.ZERO ) THEN
  556: *
  557: *                    0 < abs(A(j,j)) <= SMLNUM:
  558: *
  559:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  560: *
  561: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  562: *                       to avoid overflow when dividing by A(j,j).
  563: *
  564:                      REC = ( TJJ*BIGNUM ) / XJ
  565:                      IF( CNORM( J ).GT.ONE ) THEN
  566: *
  567: *                          Scale by 1/CNORM(j) to avoid overflow when
  568: *                          multiplying x(j) times column j.
  569: *
  570:                         REC = REC / CNORM( J )
  571:                      END IF
  572:                      CALL DSCAL( N, REC, X, 1 )
  573:                      SCALE = SCALE*REC
  574:                      XMAX = XMAX*REC
  575:                   END IF
  576:                   X( J ) = X( J ) / TJJS
  577:                   XJ = ABS( X( J ) )
  578:                ELSE
  579: *
  580: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  581: *                    scale = 0, and compute a solution to A*x = 0.
  582: *
  583:                   DO 90 I = 1, N
  584:                      X( I ) = ZERO
  585:    90             CONTINUE
  586:                   X( J ) = ONE
  587:                   XJ = ONE
  588:                   SCALE = ZERO
  589:                   XMAX = ZERO
  590:                END IF
  591:   100          CONTINUE
  592: *
  593: *              Scale x if necessary to avoid overflow when adding a
  594: *              multiple of column j of A.
  595: *
  596:                IF( XJ.GT.ONE ) THEN
  597:                   REC = ONE / XJ
  598:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  599: *
  600: *                    Scale x by 1/(2*abs(x(j))).
  601: *
  602:                      REC = REC*HALF
  603:                      CALL DSCAL( N, REC, X, 1 )
  604:                      SCALE = SCALE*REC
  605:                   END IF
  606:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  607: *
  608: *                 Scale x by 1/2.
  609: *
  610:                   CALL DSCAL( N, HALF, X, 1 )
  611:                   SCALE = SCALE*HALF
  612:                END IF
  613: *
  614:                IF( UPPER ) THEN
  615:                   IF( J.GT.1 ) THEN
  616: *
  617: *                    Compute the update
  618: *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  619: *
  620:                      CALL DAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
  621:      $                           1 )
  622:                      I = IDAMAX( J-1, X, 1 )
  623:                      XMAX = ABS( X( I ) )
  624:                   END IF
  625:                   IP = IP - J
  626:                ELSE
  627:                   IF( J.LT.N ) THEN
  628: *
  629: *                    Compute the update
  630: *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  631: *
  632:                      CALL DAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
  633:      $                           X( J+1 ), 1 )
  634:                      I = J + IDAMAX( N-J, X( J+1 ), 1 )
  635:                      XMAX = ABS( X( I ) )
  636:                   END IF
  637:                   IP = IP + N - J + 1
  638:                END IF
  639:   110       CONTINUE
  640: *
  641:          ELSE
  642: *
  643: *           Solve A**T * x = b
  644: *
  645:             IP = JFIRST*( JFIRST+1 ) / 2
  646:             JLEN = 1
  647:             DO 160 J = JFIRST, JLAST, JINC
  648: *
  649: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  650: *                                    k<>j
  651: *
  652:                XJ = ABS( X( J ) )
  653:                USCAL = TSCAL
  654:                REC = ONE / MAX( XMAX, ONE )
  655:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  656: *
  657: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  658: *
  659:                   REC = REC*HALF
  660:                   IF( NOUNIT ) THEN
  661:                      TJJS = AP( IP )*TSCAL
  662:                   ELSE
  663:                      TJJS = TSCAL
  664:                   END IF
  665:                   TJJ = ABS( TJJS )
  666:                   IF( TJJ.GT.ONE ) THEN
  667: *
  668: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  669: *
  670:                      REC = MIN( ONE, REC*TJJ )
  671:                      USCAL = USCAL / TJJS
  672:                   END IF
  673:                   IF( REC.LT.ONE ) THEN
  674:                      CALL DSCAL( N, REC, X, 1 )
  675:                      SCALE = SCALE*REC
  676:                      XMAX = XMAX*REC
  677:                   END IF
  678:                END IF
  679: *
  680:                SUMJ = ZERO
  681:                IF( USCAL.EQ.ONE ) THEN
  682: *
  683: *                 If the scaling needed for A in the dot product is 1,
  684: *                 call DDOT to perform the dot product.
  685: *
  686:                   IF( UPPER ) THEN
  687:                      SUMJ = DDOT( J-1, AP( IP-J+1 ), 1, X, 1 )
  688:                   ELSE IF( J.LT.N ) THEN
  689:                      SUMJ = DDOT( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  690:                   END IF
  691:                ELSE
  692: *
  693: *                 Otherwise, use in-line code for the dot product.
  694: *
  695:                   IF( UPPER ) THEN
  696:                      DO 120 I = 1, J - 1
  697:                         SUMJ = SUMJ + ( AP( IP-J+I )*USCAL )*X( I )
  698:   120                CONTINUE
  699:                   ELSE IF( J.LT.N ) THEN
  700:                      DO 130 I = 1, N - J
  701:                         SUMJ = SUMJ + ( AP( IP+I )*USCAL )*X( J+I )
  702:   130                CONTINUE
  703:                   END IF
  704:                END IF
  705: *
  706:                IF( USCAL.EQ.TSCAL ) THEN
  707: *
  708: *                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  709: *                 was not used to scale the dotproduct.
  710: *
  711:                   X( J ) = X( J ) - SUMJ
  712:                   XJ = ABS( X( J ) )
  713:                   IF( NOUNIT ) THEN
  714: *
  715: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  716: *
  717:                      TJJS = AP( IP )*TSCAL
  718:                   ELSE
  719:                      TJJS = TSCAL
  720:                      IF( TSCAL.EQ.ONE )
  721:      $                  GO TO 150
  722:                   END IF
  723:                   TJJ = ABS( TJJS )
  724:                   IF( TJJ.GT.SMLNUM ) THEN
  725: *
  726: *                       abs(A(j,j)) > SMLNUM:
  727: *
  728:                      IF( TJJ.LT.ONE ) THEN
  729:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  730: *
  731: *                             Scale X by 1/abs(x(j)).
  732: *
  733:                            REC = ONE / XJ
  734:                            CALL DSCAL( N, REC, X, 1 )
  735:                            SCALE = SCALE*REC
  736:                            XMAX = XMAX*REC
  737:                         END IF
  738:                      END IF
  739:                      X( J ) = X( J ) / TJJS
  740:                   ELSE IF( TJJ.GT.ZERO ) THEN
  741: *
  742: *                       0 < abs(A(j,j)) <= SMLNUM:
  743: *
  744:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  745: *
  746: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  747: *
  748:                         REC = ( TJJ*BIGNUM ) / XJ
  749:                         CALL DSCAL( N, REC, X, 1 )
  750:                         SCALE = SCALE*REC
  751:                         XMAX = XMAX*REC
  752:                      END IF
  753:                      X( J ) = X( J ) / TJJS
  754:                   ELSE
  755: *
  756: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  757: *                       scale = 0, and compute a solution to A**T*x = 0.
  758: *
  759:                      DO 140 I = 1, N
  760:                         X( I ) = ZERO
  761:   140                CONTINUE
  762:                      X( J ) = ONE
  763:                      SCALE = ZERO
  764:                      XMAX = ZERO
  765:                   END IF
  766:   150             CONTINUE
  767:                ELSE
  768: *
  769: *                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
  770: *                 product has already been divided by 1/A(j,j).
  771: *
  772:                   X( J ) = X( J ) / TJJS - SUMJ
  773:                END IF
  774:                XMAX = MAX( XMAX, ABS( X( J ) ) )
  775:                JLEN = JLEN + 1
  776:                IP = IP + JINC*JLEN
  777:   160       CONTINUE
  778:          END IF
  779:          SCALE = SCALE / TSCAL
  780:       END IF
  781: *
  782: *     Scale the column norms by 1/TSCAL for return.
  783: *
  784:       IF( TSCAL.NE.ONE ) THEN
  785:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  786:       END IF
  787: *
  788:       RETURN
  789: *
  790: *     End of DLATPS
  791: *
  792:       END

CVSweb interface <joel.bertrand@systella.fr>