File:  [local] / rpl / lapack / lapack / dlatps.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
    2:      $                   CNORM, INFO )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   11:       INTEGER            INFO, N
   12:       DOUBLE PRECISION   SCALE
   13: *     ..
   14: *     .. Array Arguments ..
   15:       DOUBLE PRECISION   AP( * ), CNORM( * ), X( * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DLATPS solves one of the triangular systems
   22: *
   23: *     A *x = s*b  or  A'*x = s*b
   24: *
   25: *  with scaling to prevent overflow, where A is an upper or lower
   26: *  triangular matrix stored in packed form.  Here A' denotes the
   27: *  transpose of A, x and b are n-element vectors, and s is a scaling
   28: *  factor, usually less than or equal to 1, chosen so that the
   29: *  components of x will be less than the overflow threshold.  If the
   30: *  unscaled problem will not cause overflow, the Level 2 BLAS routine
   31: *  DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
   32: *  then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
   33: *
   34: *  Arguments
   35: *  =========
   36: *
   37: *  UPLO    (input) CHARACTER*1
   38: *          Specifies whether the matrix A is upper or lower triangular.
   39: *          = 'U':  Upper triangular
   40: *          = 'L':  Lower triangular
   41: *
   42: *  TRANS   (input) CHARACTER*1
   43: *          Specifies the operation applied to A.
   44: *          = 'N':  Solve A * x = s*b  (No transpose)
   45: *          = 'T':  Solve A'* x = s*b  (Transpose)
   46: *          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose)
   47: *
   48: *  DIAG    (input) CHARACTER*1
   49: *          Specifies whether or not the matrix A is unit triangular.
   50: *          = 'N':  Non-unit triangular
   51: *          = 'U':  Unit triangular
   52: *
   53: *  NORMIN  (input) CHARACTER*1
   54: *          Specifies whether CNORM has been set or not.
   55: *          = 'Y':  CNORM contains the column norms on entry
   56: *          = 'N':  CNORM is not set on entry.  On exit, the norms will
   57: *                  be computed and stored in CNORM.
   58: *
   59: *  N       (input) INTEGER
   60: *          The order of the matrix A.  N >= 0.
   61: *
   62: *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   63: *          The upper or lower triangular matrix A, packed columnwise in
   64: *          a linear array.  The j-th column of A is stored in the array
   65: *          AP as follows:
   66: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   67: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   68: *
   69: *  X       (input/output) DOUBLE PRECISION array, dimension (N)
   70: *          On entry, the right hand side b of the triangular system.
   71: *          On exit, X is overwritten by the solution vector x.
   72: *
   73: *  SCALE   (output) DOUBLE PRECISION
   74: *          The scaling factor s for the triangular system
   75: *             A * x = s*b  or  A'* x = s*b.
   76: *          If SCALE = 0, the matrix A is singular or badly scaled, and
   77: *          the vector x is an exact or approximate solution to A*x = 0.
   78: *
   79: *  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
   80: *
   81: *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
   82: *          contains the norm of the off-diagonal part of the j-th column
   83: *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
   84: *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
   85: *          must be greater than or equal to the 1-norm.
   86: *
   87: *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
   88: *          returns the 1-norm of the offdiagonal part of the j-th column
   89: *          of A.
   90: *
   91: *  INFO    (output) INTEGER
   92: *          = 0:  successful exit
   93: *          < 0:  if INFO = -k, the k-th argument had an illegal value
   94: *
   95: *  Further Details
   96: *  ======= =======
   97: *
   98: *  A rough bound on x is computed; if that is less than overflow, DTPSV
   99: *  is called, otherwise, specific code is used which checks for possible
  100: *  overflow or divide-by-zero at every operation.
  101: *
  102: *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  103: *  if A is lower triangular is
  104: *
  105: *       x[1:n] := b[1:n]
  106: *       for j = 1, ..., n
  107: *            x(j) := x(j) / A(j,j)
  108: *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  109: *       end
  110: *
  111: *  Define bounds on the components of x after j iterations of the loop:
  112: *     M(j) = bound on x[1:j]
  113: *     G(j) = bound on x[j+1:n]
  114: *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  115: *
  116: *  Then for iteration j+1 we have
  117: *     M(j+1) <= G(j) / | A(j+1,j+1) |
  118: *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  119: *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  120: *
  121: *  where CNORM(j+1) is greater than or equal to the infinity-norm of
  122: *  column j+1 of A, not counting the diagonal.  Hence
  123: *
  124: *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  125: *                  1<=i<=j
  126: *  and
  127: *
  128: *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  129: *                                   1<=i< j
  130: *
  131: *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
  132: *  reciprocal of the largest M(j), j=1,..,n, is larger than
  133: *  max(underflow, 1/overflow).
  134: *
  135: *  The bound on x(j) is also used to determine when a step in the
  136: *  columnwise method can be performed without fear of overflow.  If
  137: *  the computed bound is greater than a large constant, x is scaled to
  138: *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  139: *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  140: *
  141: *  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic
  142: *  algorithm for A upper triangular is
  143: *
  144: *       for j = 1, ..., n
  145: *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  146: *       end
  147: *
  148: *  We simultaneously compute two bounds
  149: *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  150: *       M(j) = bound on x(i), 1<=i<=j
  151: *
  152: *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  153: *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  154: *  Then the bound on x(j) is
  155: *
  156: *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  157: *
  158: *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  159: *                      1<=i<=j
  160: *
  161: *  and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
  162: *  than max(underflow, 1/overflow).
  163: *
  164: *  =====================================================================
  165: *
  166: *     .. Parameters ..
  167:       DOUBLE PRECISION   ZERO, HALF, ONE
  168:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  169: *     ..
  170: *     .. Local Scalars ..
  171:       LOGICAL            NOTRAN, NOUNIT, UPPER
  172:       INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
  173:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  174:      $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  175: *     ..
  176: *     .. External Functions ..
  177:       LOGICAL            LSAME
  178:       INTEGER            IDAMAX
  179:       DOUBLE PRECISION   DASUM, DDOT, DLAMCH
  180:       EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
  181: *     ..
  182: *     .. External Subroutines ..
  183:       EXTERNAL           DAXPY, DSCAL, DTPSV, XERBLA
  184: *     ..
  185: *     .. Intrinsic Functions ..
  186:       INTRINSIC          ABS, MAX, MIN
  187: *     ..
  188: *     .. Executable Statements ..
  189: *
  190:       INFO = 0
  191:       UPPER = LSAME( UPLO, 'U' )
  192:       NOTRAN = LSAME( TRANS, 'N' )
  193:       NOUNIT = LSAME( DIAG, 'N' )
  194: *
  195: *     Test the input parameters.
  196: *
  197:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  198:          INFO = -1
  199:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  200:      $         LSAME( TRANS, 'C' ) ) THEN
  201:          INFO = -2
  202:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  203:          INFO = -3
  204:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  205:      $         LSAME( NORMIN, 'N' ) ) THEN
  206:          INFO = -4
  207:       ELSE IF( N.LT.0 ) THEN
  208:          INFO = -5
  209:       END IF
  210:       IF( INFO.NE.0 ) THEN
  211:          CALL XERBLA( 'DLATPS', -INFO )
  212:          RETURN
  213:       END IF
  214: *
  215: *     Quick return if possible
  216: *
  217:       IF( N.EQ.0 )
  218:      $   RETURN
  219: *
  220: *     Determine machine dependent parameters to control overflow.
  221: *
  222:       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  223:       BIGNUM = ONE / SMLNUM
  224:       SCALE = ONE
  225: *
  226:       IF( LSAME( NORMIN, 'N' ) ) THEN
  227: *
  228: *        Compute the 1-norm of each column, not including the diagonal.
  229: *
  230:          IF( UPPER ) THEN
  231: *
  232: *           A is upper triangular.
  233: *
  234:             IP = 1
  235:             DO 10 J = 1, N
  236:                CNORM( J ) = DASUM( J-1, AP( IP ), 1 )
  237:                IP = IP + J
  238:    10       CONTINUE
  239:          ELSE
  240: *
  241: *           A is lower triangular.
  242: *
  243:             IP = 1
  244:             DO 20 J = 1, N - 1
  245:                CNORM( J ) = DASUM( N-J, AP( IP+1 ), 1 )
  246:                IP = IP + N - J + 1
  247:    20       CONTINUE
  248:             CNORM( N ) = ZERO
  249:          END IF
  250:       END IF
  251: *
  252: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  253: *     greater than BIGNUM.
  254: *
  255:       IMAX = IDAMAX( N, CNORM, 1 )
  256:       TMAX = CNORM( IMAX )
  257:       IF( TMAX.LE.BIGNUM ) THEN
  258:          TSCAL = ONE
  259:       ELSE
  260:          TSCAL = ONE / ( SMLNUM*TMAX )
  261:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  262:       END IF
  263: *
  264: *     Compute a bound on the computed solution vector to see if the
  265: *     Level 2 BLAS routine DTPSV can be used.
  266: *
  267:       J = IDAMAX( N, X, 1 )
  268:       XMAX = ABS( X( J ) )
  269:       XBND = XMAX
  270:       IF( NOTRAN ) THEN
  271: *
  272: *        Compute the growth in A * x = b.
  273: *
  274:          IF( UPPER ) THEN
  275:             JFIRST = N
  276:             JLAST = 1
  277:             JINC = -1
  278:          ELSE
  279:             JFIRST = 1
  280:             JLAST = N
  281:             JINC = 1
  282:          END IF
  283: *
  284:          IF( TSCAL.NE.ONE ) THEN
  285:             GROW = ZERO
  286:             GO TO 50
  287:          END IF
  288: *
  289:          IF( NOUNIT ) THEN
  290: *
  291: *           A is non-unit triangular.
  292: *
  293: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  294: *           Initially, G(0) = max{x(i), i=1,...,n}.
  295: *
  296:             GROW = ONE / MAX( XBND, SMLNUM )
  297:             XBND = GROW
  298:             IP = JFIRST*( JFIRST+1 ) / 2
  299:             JLEN = N
  300:             DO 30 J = JFIRST, JLAST, JINC
  301: *
  302: *              Exit the loop if the growth factor is too small.
  303: *
  304:                IF( GROW.LE.SMLNUM )
  305:      $            GO TO 50
  306: *
  307: *              M(j) = G(j-1) / abs(A(j,j))
  308: *
  309:                TJJ = ABS( AP( IP ) )
  310:                XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  311:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  312: *
  313: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  314: *
  315:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  316:                ELSE
  317: *
  318: *                 G(j) could overflow, set GROW to 0.
  319: *
  320:                   GROW = ZERO
  321:                END IF
  322:                IP = IP + JINC*JLEN
  323:                JLEN = JLEN - 1
  324:    30       CONTINUE
  325:             GROW = XBND
  326:          ELSE
  327: *
  328: *           A is unit triangular.
  329: *
  330: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  331: *
  332:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  333:             DO 40 J = JFIRST, JLAST, JINC
  334: *
  335: *              Exit the loop if the growth factor is too small.
  336: *
  337:                IF( GROW.LE.SMLNUM )
  338:      $            GO TO 50
  339: *
  340: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  341: *
  342:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  343:    40       CONTINUE
  344:          END IF
  345:    50    CONTINUE
  346: *
  347:       ELSE
  348: *
  349: *        Compute the growth in A' * x = b.
  350: *
  351:          IF( UPPER ) THEN
  352:             JFIRST = 1
  353:             JLAST = N
  354:             JINC = 1
  355:          ELSE
  356:             JFIRST = N
  357:             JLAST = 1
  358:             JINC = -1
  359:          END IF
  360: *
  361:          IF( TSCAL.NE.ONE ) THEN
  362:             GROW = ZERO
  363:             GO TO 80
  364:          END IF
  365: *
  366:          IF( NOUNIT ) THEN
  367: *
  368: *           A is non-unit triangular.
  369: *
  370: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  371: *           Initially, M(0) = max{x(i), i=1,...,n}.
  372: *
  373:             GROW = ONE / MAX( XBND, SMLNUM )
  374:             XBND = GROW
  375:             IP = JFIRST*( JFIRST+1 ) / 2
  376:             JLEN = 1
  377:             DO 60 J = JFIRST, JLAST, JINC
  378: *
  379: *              Exit the loop if the growth factor is too small.
  380: *
  381:                IF( GROW.LE.SMLNUM )
  382:      $            GO TO 80
  383: *
  384: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  385: *
  386:                XJ = ONE + CNORM( J )
  387:                GROW = MIN( GROW, XBND / XJ )
  388: *
  389: *              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  390: *
  391:                TJJ = ABS( AP( IP ) )
  392:                IF( XJ.GT.TJJ )
  393:      $            XBND = XBND*( TJJ / XJ )
  394:                JLEN = JLEN + 1
  395:                IP = IP + JINC*JLEN
  396:    60       CONTINUE
  397:             GROW = MIN( GROW, XBND )
  398:          ELSE
  399: *
  400: *           A is unit triangular.
  401: *
  402: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  403: *
  404:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  405:             DO 70 J = JFIRST, JLAST, JINC
  406: *
  407: *              Exit the loop if the growth factor is too small.
  408: *
  409:                IF( GROW.LE.SMLNUM )
  410:      $            GO TO 80
  411: *
  412: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  413: *
  414:                XJ = ONE + CNORM( J )
  415:                GROW = GROW / XJ
  416:    70       CONTINUE
  417:          END IF
  418:    80    CONTINUE
  419:       END IF
  420: *
  421:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  422: *
  423: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  424: *        elements of X is not too small.
  425: *
  426:          CALL DTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
  427:       ELSE
  428: *
  429: *        Use a Level 1 BLAS solve, scaling intermediate results.
  430: *
  431:          IF( XMAX.GT.BIGNUM ) THEN
  432: *
  433: *           Scale X so that its components are less than or equal to
  434: *           BIGNUM in absolute value.
  435: *
  436:             SCALE = BIGNUM / XMAX
  437:             CALL DSCAL( N, SCALE, X, 1 )
  438:             XMAX = BIGNUM
  439:          END IF
  440: *
  441:          IF( NOTRAN ) THEN
  442: *
  443: *           Solve A * x = b
  444: *
  445:             IP = JFIRST*( JFIRST+1 ) / 2
  446:             DO 110 J = JFIRST, JLAST, JINC
  447: *
  448: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  449: *
  450:                XJ = ABS( X( J ) )
  451:                IF( NOUNIT ) THEN
  452:                   TJJS = AP( IP )*TSCAL
  453:                ELSE
  454:                   TJJS = TSCAL
  455:                   IF( TSCAL.EQ.ONE )
  456:      $               GO TO 100
  457:                END IF
  458:                TJJ = ABS( TJJS )
  459:                IF( TJJ.GT.SMLNUM ) THEN
  460: *
  461: *                    abs(A(j,j)) > SMLNUM:
  462: *
  463:                   IF( TJJ.LT.ONE ) THEN
  464:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  465: *
  466: *                          Scale x by 1/b(j).
  467: *
  468:                         REC = ONE / XJ
  469:                         CALL DSCAL( N, REC, X, 1 )
  470:                         SCALE = SCALE*REC
  471:                         XMAX = XMAX*REC
  472:                      END IF
  473:                   END IF
  474:                   X( J ) = X( J ) / TJJS
  475:                   XJ = ABS( X( J ) )
  476:                ELSE IF( TJJ.GT.ZERO ) THEN
  477: *
  478: *                    0 < abs(A(j,j)) <= SMLNUM:
  479: *
  480:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  481: *
  482: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  483: *                       to avoid overflow when dividing by A(j,j).
  484: *
  485:                      REC = ( TJJ*BIGNUM ) / XJ
  486:                      IF( CNORM( J ).GT.ONE ) THEN
  487: *
  488: *                          Scale by 1/CNORM(j) to avoid overflow when
  489: *                          multiplying x(j) times column j.
  490: *
  491:                         REC = REC / CNORM( J )
  492:                      END IF
  493:                      CALL DSCAL( N, REC, X, 1 )
  494:                      SCALE = SCALE*REC
  495:                      XMAX = XMAX*REC
  496:                   END IF
  497:                   X( J ) = X( J ) / TJJS
  498:                   XJ = ABS( X( J ) )
  499:                ELSE
  500: *
  501: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  502: *                    scale = 0, and compute a solution to A*x = 0.
  503: *
  504:                   DO 90 I = 1, N
  505:                      X( I ) = ZERO
  506:    90             CONTINUE
  507:                   X( J ) = ONE
  508:                   XJ = ONE
  509:                   SCALE = ZERO
  510:                   XMAX = ZERO
  511:                END IF
  512:   100          CONTINUE
  513: *
  514: *              Scale x if necessary to avoid overflow when adding a
  515: *              multiple of column j of A.
  516: *
  517:                IF( XJ.GT.ONE ) THEN
  518:                   REC = ONE / XJ
  519:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  520: *
  521: *                    Scale x by 1/(2*abs(x(j))).
  522: *
  523:                      REC = REC*HALF
  524:                      CALL DSCAL( N, REC, X, 1 )
  525:                      SCALE = SCALE*REC
  526:                   END IF
  527:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  528: *
  529: *                 Scale x by 1/2.
  530: *
  531:                   CALL DSCAL( N, HALF, X, 1 )
  532:                   SCALE = SCALE*HALF
  533:                END IF
  534: *
  535:                IF( UPPER ) THEN
  536:                   IF( J.GT.1 ) THEN
  537: *
  538: *                    Compute the update
  539: *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  540: *
  541:                      CALL DAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
  542:      $                           1 )
  543:                      I = IDAMAX( J-1, X, 1 )
  544:                      XMAX = ABS( X( I ) )
  545:                   END IF
  546:                   IP = IP - J
  547:                ELSE
  548:                   IF( J.LT.N ) THEN
  549: *
  550: *                    Compute the update
  551: *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  552: *
  553:                      CALL DAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
  554:      $                           X( J+1 ), 1 )
  555:                      I = J + IDAMAX( N-J, X( J+1 ), 1 )
  556:                      XMAX = ABS( X( I ) )
  557:                   END IF
  558:                   IP = IP + N - J + 1
  559:                END IF
  560:   110       CONTINUE
  561: *
  562:          ELSE
  563: *
  564: *           Solve A' * x = b
  565: *
  566:             IP = JFIRST*( JFIRST+1 ) / 2
  567:             JLEN = 1
  568:             DO 160 J = JFIRST, JLAST, JINC
  569: *
  570: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  571: *                                    k<>j
  572: *
  573:                XJ = ABS( X( J ) )
  574:                USCAL = TSCAL
  575:                REC = ONE / MAX( XMAX, ONE )
  576:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  577: *
  578: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  579: *
  580:                   REC = REC*HALF
  581:                   IF( NOUNIT ) THEN
  582:                      TJJS = AP( IP )*TSCAL
  583:                   ELSE
  584:                      TJJS = TSCAL
  585:                   END IF
  586:                   TJJ = ABS( TJJS )
  587:                   IF( TJJ.GT.ONE ) THEN
  588: *
  589: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  590: *
  591:                      REC = MIN( ONE, REC*TJJ )
  592:                      USCAL = USCAL / TJJS
  593:                   END IF
  594:                   IF( REC.LT.ONE ) THEN
  595:                      CALL DSCAL( N, REC, X, 1 )
  596:                      SCALE = SCALE*REC
  597:                      XMAX = XMAX*REC
  598:                   END IF
  599:                END IF
  600: *
  601:                SUMJ = ZERO
  602:                IF( USCAL.EQ.ONE ) THEN
  603: *
  604: *                 If the scaling needed for A in the dot product is 1,
  605: *                 call DDOT to perform the dot product.
  606: *
  607:                   IF( UPPER ) THEN
  608:                      SUMJ = DDOT( J-1, AP( IP-J+1 ), 1, X, 1 )
  609:                   ELSE IF( J.LT.N ) THEN
  610:                      SUMJ = DDOT( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  611:                   END IF
  612:                ELSE
  613: *
  614: *                 Otherwise, use in-line code for the dot product.
  615: *
  616:                   IF( UPPER ) THEN
  617:                      DO 120 I = 1, J - 1
  618:                         SUMJ = SUMJ + ( AP( IP-J+I )*USCAL )*X( I )
  619:   120                CONTINUE
  620:                   ELSE IF( J.LT.N ) THEN
  621:                      DO 130 I = 1, N - J
  622:                         SUMJ = SUMJ + ( AP( IP+I )*USCAL )*X( J+I )
  623:   130                CONTINUE
  624:                   END IF
  625:                END IF
  626: *
  627:                IF( USCAL.EQ.TSCAL ) THEN
  628: *
  629: *                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  630: *                 was not used to scale the dotproduct.
  631: *
  632:                   X( J ) = X( J ) - SUMJ
  633:                   XJ = ABS( X( J ) )
  634:                   IF( NOUNIT ) THEN
  635: *
  636: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  637: *
  638:                      TJJS = AP( IP )*TSCAL
  639:                   ELSE
  640:                      TJJS = TSCAL
  641:                      IF( TSCAL.EQ.ONE )
  642:      $                  GO TO 150
  643:                   END IF
  644:                   TJJ = ABS( TJJS )
  645:                   IF( TJJ.GT.SMLNUM ) THEN
  646: *
  647: *                       abs(A(j,j)) > SMLNUM:
  648: *
  649:                      IF( TJJ.LT.ONE ) THEN
  650:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  651: *
  652: *                             Scale X by 1/abs(x(j)).
  653: *
  654:                            REC = ONE / XJ
  655:                            CALL DSCAL( N, REC, X, 1 )
  656:                            SCALE = SCALE*REC
  657:                            XMAX = XMAX*REC
  658:                         END IF
  659:                      END IF
  660:                      X( J ) = X( J ) / TJJS
  661:                   ELSE IF( TJJ.GT.ZERO ) THEN
  662: *
  663: *                       0 < abs(A(j,j)) <= SMLNUM:
  664: *
  665:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  666: *
  667: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  668: *
  669:                         REC = ( TJJ*BIGNUM ) / XJ
  670:                         CALL DSCAL( N, REC, X, 1 )
  671:                         SCALE = SCALE*REC
  672:                         XMAX = XMAX*REC
  673:                      END IF
  674:                      X( J ) = X( J ) / TJJS
  675:                   ELSE
  676: *
  677: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  678: *                       scale = 0, and compute a solution to A'*x = 0.
  679: *
  680:                      DO 140 I = 1, N
  681:                         X( I ) = ZERO
  682:   140                CONTINUE
  683:                      X( J ) = ONE
  684:                      SCALE = ZERO
  685:                      XMAX = ZERO
  686:                   END IF
  687:   150             CONTINUE
  688:                ELSE
  689: *
  690: *                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
  691: *                 product has already been divided by 1/A(j,j).
  692: *
  693:                   X( J ) = X( J ) / TJJS - SUMJ
  694:                END IF
  695:                XMAX = MAX( XMAX, ABS( X( J ) ) )
  696:                JLEN = JLEN + 1
  697:                IP = IP + JINC*JLEN
  698:   160       CONTINUE
  699:          END IF
  700:          SCALE = SCALE / TSCAL
  701:       END IF
  702: *
  703: *     Scale the column norms by 1/TSCAL for return.
  704: *
  705:       IF( TSCAL.NE.ONE ) THEN
  706:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  707:       END IF
  708: *
  709:       RETURN
  710: *
  711: *     End of DLATPS
  712: *
  713:       END

CVSweb interface <joel.bertrand@systella.fr>