Annotation of rpl/lapack/lapack/dlatdf.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
                      2:      $                   JPIV )
                      3: *
                      4: *  -- LAPACK auxiliary routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            IJOB, LDZ, N
                     11:       DOUBLE PRECISION   RDSCAL, RDSUM
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IPIV( * ), JPIV( * )
                     15:       DOUBLE PRECISION   RHS( * ), Z( LDZ, * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DLATDF uses the LU factorization of the n-by-n matrix Z computed by
                     22: *  DGETC2 and computes a contribution to the reciprocal Dif-estimate
                     23: *  by solving Z * x = b for x, and choosing the r.h.s. b such that
                     24: *  the norm of x is as large as possible. On entry RHS = b holds the
                     25: *  contribution from earlier solved sub-systems, and on return RHS = x.
                     26: *
                     27: *  The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q,
                     28: *  where P and Q are permutation matrices. L is lower triangular with
                     29: *  unit diagonal elements and U is upper triangular.
                     30: *
                     31: *  Arguments
                     32: *  =========
                     33: *
                     34: *  IJOB    (input) INTEGER
                     35: *          IJOB = 2: First compute an approximative null-vector e
                     36: *              of Z using DGECON, e is normalized and solve for
                     37: *              Zx = +-e - f with the sign giving the greater value
                     38: *              of 2-norm(x). About 5 times as expensive as Default.
                     39: *          IJOB .ne. 2: Local look ahead strategy where all entries of
                     40: *              the r.h.s. b is choosen as either +1 or -1 (Default).
                     41: *
                     42: *  N       (input) INTEGER
                     43: *          The number of columns of the matrix Z.
                     44: *
                     45: *  Z       (input) DOUBLE PRECISION array, dimension (LDZ, N)
                     46: *          On entry, the LU part of the factorization of the n-by-n
                     47: *          matrix Z computed by DGETC2:  Z = P * L * U * Q
                     48: *
                     49: *  LDZ     (input) INTEGER
                     50: *          The leading dimension of the array Z.  LDA >= max(1, N).
                     51: *
                     52: *  RHS     (input/output) DOUBLE PRECISION array, dimension N.
                     53: *          On entry, RHS contains contributions from other subsystems.
                     54: *          On exit, RHS contains the solution of the subsystem with
                     55: *          entries acoording to the value of IJOB (see above).
                     56: *
                     57: *  RDSUM   (input/output) DOUBLE PRECISION
                     58: *          On entry, the sum of squares of computed contributions to
                     59: *          the Dif-estimate under computation by DTGSYL, where the
                     60: *          scaling factor RDSCAL (see below) has been factored out.
                     61: *          On exit, the corresponding sum of squares updated with the
                     62: *          contributions from the current sub-system.
                     63: *          If TRANS = 'T' RDSUM is not touched.
                     64: *          NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.
                     65: *
                     66: *  RDSCAL  (input/output) DOUBLE PRECISION
                     67: *          On entry, scaling factor used to prevent overflow in RDSUM.
                     68: *          On exit, RDSCAL is updated w.r.t. the current contributions
                     69: *          in RDSUM.
                     70: *          If TRANS = 'T', RDSCAL is not touched.
                     71: *          NOTE: RDSCAL only makes sense when DTGSY2 is called by
                     72: *                DTGSYL.
                     73: *
                     74: *  IPIV    (input) INTEGER array, dimension (N).
                     75: *          The pivot indices; for 1 <= i <= N, row i of the
                     76: *          matrix has been interchanged with row IPIV(i).
                     77: *
                     78: *  JPIV    (input) INTEGER array, dimension (N).
                     79: *          The pivot indices; for 1 <= j <= N, column j of the
                     80: *          matrix has been interchanged with column JPIV(j).
                     81: *
                     82: *  Further Details
                     83: *  ===============
                     84: *
                     85: *  Based on contributions by
                     86: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                     87: *     Umea University, S-901 87 Umea, Sweden.
                     88: *
                     89: *  This routine is a further developed implementation of algorithm
                     90: *  BSOLVE in [1] using complete pivoting in the LU factorization.
                     91: *
                     92: *  [1] Bo Kagstrom and Lars Westin,
                     93: *      Generalized Schur Methods with Condition Estimators for
                     94: *      Solving the Generalized Sylvester Equation, IEEE Transactions
                     95: *      on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
                     96: *
                     97: *  [2] Peter Poromaa,
                     98: *      On Efficient and Robust Estimators for the Separation
                     99: *      between two Regular Matrix Pairs with Applications in
                    100: *      Condition Estimation. Report IMINF-95.05, Departement of
                    101: *      Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
                    102: *
                    103: *  =====================================================================
                    104: *
                    105: *     .. Parameters ..
                    106:       INTEGER            MAXDIM
                    107:       PARAMETER          ( MAXDIM = 8 )
                    108:       DOUBLE PRECISION   ZERO, ONE
                    109:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    110: *     ..
                    111: *     .. Local Scalars ..
                    112:       INTEGER            I, INFO, J, K
                    113:       DOUBLE PRECISION   BM, BP, PMONE, SMINU, SPLUS, TEMP
                    114: *     ..
                    115: *     .. Local Arrays ..
                    116:       INTEGER            IWORK( MAXDIM )
                    117:       DOUBLE PRECISION   WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
                    118: *     ..
                    119: *     .. External Subroutines ..
                    120:       EXTERNAL           DAXPY, DCOPY, DGECON, DGESC2, DLASSQ, DLASWP,
                    121:      $                   DSCAL
                    122: *     ..
                    123: *     .. External Functions ..
                    124:       DOUBLE PRECISION   DASUM, DDOT
                    125:       EXTERNAL           DASUM, DDOT
                    126: *     ..
                    127: *     .. Intrinsic Functions ..
                    128:       INTRINSIC          ABS, SQRT
                    129: *     ..
                    130: *     .. Executable Statements ..
                    131: *
                    132:       IF( IJOB.NE.2 ) THEN
                    133: *
                    134: *        Apply permutations IPIV to RHS
                    135: *
                    136:          CALL DLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
                    137: *
                    138: *        Solve for L-part choosing RHS either to +1 or -1.
                    139: *
                    140:          PMONE = -ONE
                    141: *
                    142:          DO 10 J = 1, N - 1
                    143:             BP = RHS( J ) + ONE
                    144:             BM = RHS( J ) - ONE
                    145:             SPLUS = ONE
                    146: *
                    147: *           Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and
                    148: *           SMIN computed more efficiently than in BSOLVE [1].
                    149: *
                    150:             SPLUS = SPLUS + DDOT( N-J, Z( J+1, J ), 1, Z( J+1, J ), 1 )
                    151:             SMINU = DDOT( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 )
                    152:             SPLUS = SPLUS*RHS( J )
                    153:             IF( SPLUS.GT.SMINU ) THEN
                    154:                RHS( J ) = BP
                    155:             ELSE IF( SMINU.GT.SPLUS ) THEN
                    156:                RHS( J ) = BM
                    157:             ELSE
                    158: *
                    159: *              In this case the updating sums are equal and we can
                    160: *              choose RHS(J) +1 or -1. The first time this happens
                    161: *              we choose -1, thereafter +1. This is a simple way to
                    162: *              get good estimates of matrices like Byers well-known
                    163: *              example (see [1]). (Not done in BSOLVE.)
                    164: *
                    165:                RHS( J ) = RHS( J ) + PMONE
                    166:                PMONE = ONE
                    167:             END IF
                    168: *
                    169: *           Compute the remaining r.h.s.
                    170: *
                    171:             TEMP = -RHS( J )
                    172:             CALL DAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
                    173: *
                    174:    10    CONTINUE
                    175: *
                    176: *        Solve for U-part, look-ahead for RHS(N) = +-1. This is not done
                    177: *        in BSOLVE and will hopefully give us a better estimate because
                    178: *        any ill-conditioning of the original matrix is transfered to U
                    179: *        and not to L. U(N, N) is an approximation to sigma_min(LU).
                    180: *
                    181:          CALL DCOPY( N-1, RHS, 1, XP, 1 )
                    182:          XP( N ) = RHS( N ) + ONE
                    183:          RHS( N ) = RHS( N ) - ONE
                    184:          SPLUS = ZERO
                    185:          SMINU = ZERO
                    186:          DO 30 I = N, 1, -1
                    187:             TEMP = ONE / Z( I, I )
                    188:             XP( I ) = XP( I )*TEMP
                    189:             RHS( I ) = RHS( I )*TEMP
                    190:             DO 20 K = I + 1, N
                    191:                XP( I ) = XP( I ) - XP( K )*( Z( I, K )*TEMP )
                    192:                RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
                    193:    20       CONTINUE
                    194:             SPLUS = SPLUS + ABS( XP( I ) )
                    195:             SMINU = SMINU + ABS( RHS( I ) )
                    196:    30    CONTINUE
                    197:          IF( SPLUS.GT.SMINU )
                    198:      $      CALL DCOPY( N, XP, 1, RHS, 1 )
                    199: *
                    200: *        Apply the permutations JPIV to the computed solution (RHS)
                    201: *
                    202:          CALL DLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
                    203: *
                    204: *        Compute the sum of squares
                    205: *
                    206:          CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
                    207: *
                    208:       ELSE
                    209: *
                    210: *        IJOB = 2, Compute approximate nullvector XM of Z
                    211: *
                    212:          CALL DGECON( 'I', N, Z, LDZ, ONE, TEMP, WORK, IWORK, INFO )
                    213:          CALL DCOPY( N, WORK( N+1 ), 1, XM, 1 )
                    214: *
                    215: *        Compute RHS
                    216: *
                    217:          CALL DLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
                    218:          TEMP = ONE / SQRT( DDOT( N, XM, 1, XM, 1 ) )
                    219:          CALL DSCAL( N, TEMP, XM, 1 )
                    220:          CALL DCOPY( N, XM, 1, XP, 1 )
                    221:          CALL DAXPY( N, ONE, RHS, 1, XP, 1 )
                    222:          CALL DAXPY( N, -ONE, XM, 1, RHS, 1 )
                    223:          CALL DGESC2( N, Z, LDZ, RHS, IPIV, JPIV, TEMP )
                    224:          CALL DGESC2( N, Z, LDZ, XP, IPIV, JPIV, TEMP )
                    225:          IF( DASUM( N, XP, 1 ).GT.DASUM( N, RHS, 1 ) )
                    226:      $      CALL DCOPY( N, XP, 1, RHS, 1 )
                    227: *
                    228: *        Compute the sum of squares
                    229: *
                    230:          CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
                    231: *
                    232:       END IF
                    233: *
                    234:       RETURN
                    235: *
                    236: *     End of DLATDF
                    237: *
                    238:       END

CVSweb interface <joel.bertrand@systella.fr>