Annotation of rpl/lapack/lapack/dlatdf.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
        !             2:      $                   JPIV )
        !             3: *
        !             4: *  -- LAPACK auxiliary routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            IJOB, LDZ, N
        !            11:       DOUBLE PRECISION   RDSCAL, RDSUM
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IPIV( * ), JPIV( * )
        !            15:       DOUBLE PRECISION   RHS( * ), Z( LDZ, * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DLATDF uses the LU factorization of the n-by-n matrix Z computed by
        !            22: *  DGETC2 and computes a contribution to the reciprocal Dif-estimate
        !            23: *  by solving Z * x = b for x, and choosing the r.h.s. b such that
        !            24: *  the norm of x is as large as possible. On entry RHS = b holds the
        !            25: *  contribution from earlier solved sub-systems, and on return RHS = x.
        !            26: *
        !            27: *  The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q,
        !            28: *  where P and Q are permutation matrices. L is lower triangular with
        !            29: *  unit diagonal elements and U is upper triangular.
        !            30: *
        !            31: *  Arguments
        !            32: *  =========
        !            33: *
        !            34: *  IJOB    (input) INTEGER
        !            35: *          IJOB = 2: First compute an approximative null-vector e
        !            36: *              of Z using DGECON, e is normalized and solve for
        !            37: *              Zx = +-e - f with the sign giving the greater value
        !            38: *              of 2-norm(x). About 5 times as expensive as Default.
        !            39: *          IJOB .ne. 2: Local look ahead strategy where all entries of
        !            40: *              the r.h.s. b is choosen as either +1 or -1 (Default).
        !            41: *
        !            42: *  N       (input) INTEGER
        !            43: *          The number of columns of the matrix Z.
        !            44: *
        !            45: *  Z       (input) DOUBLE PRECISION array, dimension (LDZ, N)
        !            46: *          On entry, the LU part of the factorization of the n-by-n
        !            47: *          matrix Z computed by DGETC2:  Z = P * L * U * Q
        !            48: *
        !            49: *  LDZ     (input) INTEGER
        !            50: *          The leading dimension of the array Z.  LDA >= max(1, N).
        !            51: *
        !            52: *  RHS     (input/output) DOUBLE PRECISION array, dimension N.
        !            53: *          On entry, RHS contains contributions from other subsystems.
        !            54: *          On exit, RHS contains the solution of the subsystem with
        !            55: *          entries acoording to the value of IJOB (see above).
        !            56: *
        !            57: *  RDSUM   (input/output) DOUBLE PRECISION
        !            58: *          On entry, the sum of squares of computed contributions to
        !            59: *          the Dif-estimate under computation by DTGSYL, where the
        !            60: *          scaling factor RDSCAL (see below) has been factored out.
        !            61: *          On exit, the corresponding sum of squares updated with the
        !            62: *          contributions from the current sub-system.
        !            63: *          If TRANS = 'T' RDSUM is not touched.
        !            64: *          NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.
        !            65: *
        !            66: *  RDSCAL  (input/output) DOUBLE PRECISION
        !            67: *          On entry, scaling factor used to prevent overflow in RDSUM.
        !            68: *          On exit, RDSCAL is updated w.r.t. the current contributions
        !            69: *          in RDSUM.
        !            70: *          If TRANS = 'T', RDSCAL is not touched.
        !            71: *          NOTE: RDSCAL only makes sense when DTGSY2 is called by
        !            72: *                DTGSYL.
        !            73: *
        !            74: *  IPIV    (input) INTEGER array, dimension (N).
        !            75: *          The pivot indices; for 1 <= i <= N, row i of the
        !            76: *          matrix has been interchanged with row IPIV(i).
        !            77: *
        !            78: *  JPIV    (input) INTEGER array, dimension (N).
        !            79: *          The pivot indices; for 1 <= j <= N, column j of the
        !            80: *          matrix has been interchanged with column JPIV(j).
        !            81: *
        !            82: *  Further Details
        !            83: *  ===============
        !            84: *
        !            85: *  Based on contributions by
        !            86: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
        !            87: *     Umea University, S-901 87 Umea, Sweden.
        !            88: *
        !            89: *  This routine is a further developed implementation of algorithm
        !            90: *  BSOLVE in [1] using complete pivoting in the LU factorization.
        !            91: *
        !            92: *  [1] Bo Kagstrom and Lars Westin,
        !            93: *      Generalized Schur Methods with Condition Estimators for
        !            94: *      Solving the Generalized Sylvester Equation, IEEE Transactions
        !            95: *      on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
        !            96: *
        !            97: *  [2] Peter Poromaa,
        !            98: *      On Efficient and Robust Estimators for the Separation
        !            99: *      between two Regular Matrix Pairs with Applications in
        !           100: *      Condition Estimation. Report IMINF-95.05, Departement of
        !           101: *      Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
        !           102: *
        !           103: *  =====================================================================
        !           104: *
        !           105: *     .. Parameters ..
        !           106:       INTEGER            MAXDIM
        !           107:       PARAMETER          ( MAXDIM = 8 )
        !           108:       DOUBLE PRECISION   ZERO, ONE
        !           109:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           110: *     ..
        !           111: *     .. Local Scalars ..
        !           112:       INTEGER            I, INFO, J, K
        !           113:       DOUBLE PRECISION   BM, BP, PMONE, SMINU, SPLUS, TEMP
        !           114: *     ..
        !           115: *     .. Local Arrays ..
        !           116:       INTEGER            IWORK( MAXDIM )
        !           117:       DOUBLE PRECISION   WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
        !           118: *     ..
        !           119: *     .. External Subroutines ..
        !           120:       EXTERNAL           DAXPY, DCOPY, DGECON, DGESC2, DLASSQ, DLASWP,
        !           121:      $                   DSCAL
        !           122: *     ..
        !           123: *     .. External Functions ..
        !           124:       DOUBLE PRECISION   DASUM, DDOT
        !           125:       EXTERNAL           DASUM, DDOT
        !           126: *     ..
        !           127: *     .. Intrinsic Functions ..
        !           128:       INTRINSIC          ABS, SQRT
        !           129: *     ..
        !           130: *     .. Executable Statements ..
        !           131: *
        !           132:       IF( IJOB.NE.2 ) THEN
        !           133: *
        !           134: *        Apply permutations IPIV to RHS
        !           135: *
        !           136:          CALL DLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
        !           137: *
        !           138: *        Solve for L-part choosing RHS either to +1 or -1.
        !           139: *
        !           140:          PMONE = -ONE
        !           141: *
        !           142:          DO 10 J = 1, N - 1
        !           143:             BP = RHS( J ) + ONE
        !           144:             BM = RHS( J ) - ONE
        !           145:             SPLUS = ONE
        !           146: *
        !           147: *           Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and
        !           148: *           SMIN computed more efficiently than in BSOLVE [1].
        !           149: *
        !           150:             SPLUS = SPLUS + DDOT( N-J, Z( J+1, J ), 1, Z( J+1, J ), 1 )
        !           151:             SMINU = DDOT( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 )
        !           152:             SPLUS = SPLUS*RHS( J )
        !           153:             IF( SPLUS.GT.SMINU ) THEN
        !           154:                RHS( J ) = BP
        !           155:             ELSE IF( SMINU.GT.SPLUS ) THEN
        !           156:                RHS( J ) = BM
        !           157:             ELSE
        !           158: *
        !           159: *              In this case the updating sums are equal and we can
        !           160: *              choose RHS(J) +1 or -1. The first time this happens
        !           161: *              we choose -1, thereafter +1. This is a simple way to
        !           162: *              get good estimates of matrices like Byers well-known
        !           163: *              example (see [1]). (Not done in BSOLVE.)
        !           164: *
        !           165:                RHS( J ) = RHS( J ) + PMONE
        !           166:                PMONE = ONE
        !           167:             END IF
        !           168: *
        !           169: *           Compute the remaining r.h.s.
        !           170: *
        !           171:             TEMP = -RHS( J )
        !           172:             CALL DAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
        !           173: *
        !           174:    10    CONTINUE
        !           175: *
        !           176: *        Solve for U-part, look-ahead for RHS(N) = +-1. This is not done
        !           177: *        in BSOLVE and will hopefully give us a better estimate because
        !           178: *        any ill-conditioning of the original matrix is transfered to U
        !           179: *        and not to L. U(N, N) is an approximation to sigma_min(LU).
        !           180: *
        !           181:          CALL DCOPY( N-1, RHS, 1, XP, 1 )
        !           182:          XP( N ) = RHS( N ) + ONE
        !           183:          RHS( N ) = RHS( N ) - ONE
        !           184:          SPLUS = ZERO
        !           185:          SMINU = ZERO
        !           186:          DO 30 I = N, 1, -1
        !           187:             TEMP = ONE / Z( I, I )
        !           188:             XP( I ) = XP( I )*TEMP
        !           189:             RHS( I ) = RHS( I )*TEMP
        !           190:             DO 20 K = I + 1, N
        !           191:                XP( I ) = XP( I ) - XP( K )*( Z( I, K )*TEMP )
        !           192:                RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
        !           193:    20       CONTINUE
        !           194:             SPLUS = SPLUS + ABS( XP( I ) )
        !           195:             SMINU = SMINU + ABS( RHS( I ) )
        !           196:    30    CONTINUE
        !           197:          IF( SPLUS.GT.SMINU )
        !           198:      $      CALL DCOPY( N, XP, 1, RHS, 1 )
        !           199: *
        !           200: *        Apply the permutations JPIV to the computed solution (RHS)
        !           201: *
        !           202:          CALL DLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
        !           203: *
        !           204: *        Compute the sum of squares
        !           205: *
        !           206:          CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
        !           207: *
        !           208:       ELSE
        !           209: *
        !           210: *        IJOB = 2, Compute approximate nullvector XM of Z
        !           211: *
        !           212:          CALL DGECON( 'I', N, Z, LDZ, ONE, TEMP, WORK, IWORK, INFO )
        !           213:          CALL DCOPY( N, WORK( N+1 ), 1, XM, 1 )
        !           214: *
        !           215: *        Compute RHS
        !           216: *
        !           217:          CALL DLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
        !           218:          TEMP = ONE / SQRT( DDOT( N, XM, 1, XM, 1 ) )
        !           219:          CALL DSCAL( N, TEMP, XM, 1 )
        !           220:          CALL DCOPY( N, XM, 1, XP, 1 )
        !           221:          CALL DAXPY( N, ONE, RHS, 1, XP, 1 )
        !           222:          CALL DAXPY( N, -ONE, XM, 1, RHS, 1 )
        !           223:          CALL DGESC2( N, Z, LDZ, RHS, IPIV, JPIV, TEMP )
        !           224:          CALL DGESC2( N, Z, LDZ, XP, IPIV, JPIV, TEMP )
        !           225:          IF( DASUM( N, XP, 1 ).GT.DASUM( N, RHS, 1 ) )
        !           226:      $      CALL DCOPY( N, XP, 1, RHS, 1 )
        !           227: *
        !           228: *        Compute the sum of squares
        !           229: *
        !           230:          CALL DLASSQ( N, RHS, 1, RDSCAL, RDSUM )
        !           231: *
        !           232:       END IF
        !           233: *
        !           234:       RETURN
        !           235: *
        !           236: *     End of DLATDF
        !           237: *
        !           238:       END

CVSweb interface <joel.bertrand@systella.fr>